
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Daniel Page, Nigel P. Smart, "Parallel Cryptographic Arithmetic Using a Redundant Montgomery Representation," IEEE Transactions on Computers, vol. 53, no. 11, pp. 14741482, November, 2004.  
BibTex  x  
@article{ 10.1109/TC.2004.100, author = {Daniel Page and Nigel P. Smart}, title = {Parallel Cryptographic Arithmetic Using a Redundant Montgomery Representation}, journal ={IEEE Transactions on Computers}, volume = {53}, number = {11}, issn = {00189340}, year = {2004}, pages = {14741482}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2004.100}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Parallel Cryptographic Arithmetic Using a Redundant Montgomery Representation IS  11 SN  00189340 SP1474 EP1482 EPD  14741482 A1  Daniel Page, A1  Nigel P. Smart, PY  2004 KW  Public key cryptosystems KW  algorithm design and analysis KW  parallel and vector implementations KW  performance measures. VL  53 JA  IEEE Transactions on Computers ER   
[1] T. Acar, HighSpeed Algorithms&Architectures for NumberTheoretic Cryptosystems PhD Thesis, Dept. of Electrical&Computer Eng., Oregon State Univ., 1997.
[2] D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi, The EM SideChannel(s) Proc. Cryptographic Hardware and Embedded Systems (CHES), pp. 2945, 2002.
[3] D. Agrawal, J.R. Rao, and P. Rohatgi, MultiChannel Attacks Proc. Cryptographic Hardware and Embedded Systems (CHES), pp. 216, 2003.
[4] K. Aoki, F. Hoshino, T. Kobayashi, and H. Oguro, Elliptic Curve Arithmetic Using SIMD Proc. Information Security Conf. (ISC), pp. 235247, 2001.
[5] R. Bhaskar, P.K. Dubey, V. Kumar, A. Rudra, and A. Sharma, Efficient Galois Arithmetic on SIMD Architectures Proc. ACM Symp. Parallel Algorithms and Architectures, pp. 256257, 2003.
[6] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography. Cambridge Univ. Press, 1999.
[7] D. Boneh and D. Brumley, Remote Timing Attacks Are Feasible Proc. 12th Usenix Security Symp., 2003.
[8] C.S.K. Clapp, InstructionLevel Parallelism in AES Candidates Proc. Second AES Candidate Conf., 1999.
[9] J.S. Coron, Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems Proc. Cryptographic Hardware and Embedded Systems (CHES), pp. 292302, 1999.
[10] R. Crandall and J. Klivington, Vector Implementation of Multiprecision Arithmetic Apple technical report, 1999.
[11] S.R. Dussé and B.S. Kaliski, A Cryptographic Library for the Motorola DSP56000 Proc. Advances in Cryptology (EUROCRYPT), pp. 230244, 1991.
[12] A. Fiat, Batch RSA J. Cryptology, vol. 10, pp. 7588, 1997.
[13] D.M. Gordon, A Survey of Fast Exponentiation Methods J. Algorithms, vol. 27, pp. 129146, 1998.
[14] S. Gueron, Enhanced Montgomery Multiplication Proc. Cryptographic Hardware and Embedded Systems (CHES), pp. 4656, 2002.
[15] G. Hachez and J.J. Quisquater, Montgomery Exponentiation with No Final Subtractions: Improved Results Proc. Cryptographic Hardware and Embedded Systems (CHES), pp. 293301, 2000.
[16] Intel Corp., Using Streaming SIMD Extensions (SSE2) to Perform Big Multiplications Intel technical report, 2000.
[17] T. Izu and T. Takagi, Fast Elliptic Curve Multiplications with SIMD Operations Proc. Fourth Int'l Conf. Information and Communications Security (ICICS), pp. 217230, 2002.
[18] C.K. Koc, T. Acar, and B. Kaliski, “Analyzing and Comparing Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3, pp. 2633, June 1996.
[19] P. Kocher, Timing Attacks on Implementations of DiffieHellman, RSA, DSS and Other Systems Proc. Advances in Cryptology (CRYPTO), pp. 104113, 1996.
[20] P.C. Kocher, J. Jaffe, and B. Jun, Differential Power Analysis Proc. Advances in Cryptology (CRYPTO), pp. 388397, 1999.
[21] H. Lipmaa, IDEA: A Cipher for Multimedia Architectures? Selected Areas in Cryptography (SAC), pp. 248263, 1998.
[22] R.B. Lee and A.M. Fiskiran, PLX: A Fully SubwordParallel InstructionSet Architecture for Fast Scalable Multimedia Processing Proc. Third Int'l Conf. Multimedia and Expo (ICME), pp. 117120, 2002.
[23] B.J. Lucier, Cryptography, Finite Fields, and AltiVec Dept. of Math., Purdue Univ.,http://www.altivec.orgarticles/, 2002.
[24] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography. CRC Press, 1997.
[25] P.L. Montgomery, Modular Multiplication without Trial Division Math. Comp., vol. 44, pp. 519521, 1985.
[26] K. Okeya and K. Sakurai, Power Analysis Breaks Elliptic Curve Cryptosystems Even Secure against the Timing Attack Proc. Progress in Cryptology (INDOCRYPT), pp. 178190, 2002.
[27] H. Shacham and D. Boneh, Improving SSL Handshake Performance via Batching Proc. Topics in Cryptology (CTRSA), pp. 2843, 2001.
[28] C.D. Walter, “Montgomery's Exponentiation Needs No Final Subtractions,” Electronics Letters, vol. 35, no. 21, pp. 18311832, 1999.
[29] C.D. Walter, Montgomery's Multiplication Technique: How to Make It Smaller and Faster Proc. Cryptographic Hardware and Embedded Systems (CHES), pp. 8093, 1999.
[30] C.D. Walter and S. Thompson, Distinguishing Exponent Digits by Observing Modular Subtractions Proc. Topics in Cryptology (CTRSA), pp. 192207, 2001.
[31] H.S. Warren, Hacker's Delight. AddisonWesley, 2002.