
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sel?uk Baktir, Berk Sunar, "Optimal Tower Fields," IEEE Transactions on Computers, vol. 53, no. 10, pp. 12311243, October, 2004.  
BibTex  x  
@article{ 10.1109/TC.2004.83, author = {Sel?uk Baktir and Berk Sunar}, title = {Optimal Tower Fields}, journal ={IEEE Transactions on Computers}, volume = {53}, number = {10}, issn = {00189340}, year = {2004}, pages = {12311243}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2004.83}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Optimal Tower Fields IS  10 SN  00189340 SP1231 EP1243 EPD  12311243 A1  Sel?uk Baktir, A1  Berk Sunar, PY  2004 KW  Optimal tower fields KW  OEF KW  finite fields KW  multiplication KW  inversion KW  elliptic curve cryptography. VL  53 JA  IEEE Transactions on Computers ER   
[1] A. Woodbury, D.V. Bailey, and C. Paar, Elliptic Curve Cryptography on Smart Cards without Coprocessors Proc. IFIP CARDIS 2000, Fourth Smart Card Research and Advanced Application Conf., Sept. 2000.
[2] R. Schroeppel, H. Orman, S. O'Malley, and O. Spatscheck, Fast Key Exchange with Elliptic Curve Systems Proc. Advances in Cryptology CRYPTO '95, D. Coppersmith, ed., pp. 4356, 1995.
[3] Ç.K. Koç and T. Acar, Montgomery Multplication in$GF(2^k)$ Design, Codes, and Cryptography, vol. 14, no. 1, pp. 5769, 1998.
[4] I.S. Hsu,T.K. Truong,L.J. Deutsch, and I.S. Reed,"A Comparison of VLSI Architectures of Finite Field Multipliers Using Dual, Normal or Standard Bases," IEEE Trans. Computers, vol. 37, no. 6, pp. 735737, June 1988.
[5] T. Itoh and S. Tsujii, A Fast Algorithm for Computing Multiplicative Inverses in$GF(2^m)$Using Normal Bases Information and Computation, vol. 78, pp. 171177, 1988.
[6] B. Sunar, Fast Galois Field Arithmetic for Elliptic Curve Cryptography and Error Control Codes PhD thesis, Dept. of Electrical&Computer Eng., Oregon State Univ., Corvallis, Nov. 1998.
[7] W. Geiselmann and D. Gollmann, SelfDual Bases in$F_{q^n}$ Designs, Codes, and Cryptography, vol. 3, pp. 333345, 1993.
[8] S.T.J. Fenn, M. Benaissa, and D. Taylor, Finite Field Inversion over the Dual Basis IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 134136, Mar. 1996.
[9] M.A. Hasan, DoubleBasis Multiplicative Inversion over${\rm GF}(2^m)$ IEEE Trans.n Computers, vol. 47, no. 9, pp. 960970, Sept. 1998.
[10] D.V. Bailey and C. Paar, Efficient Arithmetic in Finite Field Extensions with Application in Elliptic Curve Cryptography J. Cryptology, vol. 14, no. 3, pp. 153176, 2001.
[11] D.V. Bailey and C. Paar, Optimal Extension Fields for Fast Arithmetic in PublicKey Algorithms Proc. Advances in Cryptology CRYPTO '98, H. Krawczyk, ed., pp. 472485, 1998.
[12] R. Lidl and H. Niederreiter, Finite Fields, vol. 20 of Encyclopedia of Math. and Its Applications. Reading, Mass.: AddisonWesley, 1983.
[13] J. Guajardo and C. Paar, ItohTsujii Inversion in Standard Basis and Its Application in Cryptography Design, Codes, and Cryptography, no. 25, pp. 207216, 2002.
[14] G.I. Davida, Inverse of Elements of a Galois Field Electronic Letters, vol. 8, pp. 518520, Oct. 1972.
[15] M. Morii and M. Kasahara, Efficient Construction of Gate Circuit for Computing Multiplicative Inverses over$GF(2^m)$ Trans. IEICE, vol. E 72, pp. 3742, Jan. 1989.
[16] A. Karatsuba and Y. Ofman, Multiplication of Multidigit Numbers on Automata Sov. Phys. Dokl. (English translation), vol. 7, no. 7, pp. 595596, 1963.
[17] P. Gaudry, F. Hess, and N.P. Smart, Constructive and Destructive Facets of Weil Descent on Elliptic Curves J. Cryptology, vol. 15, pp. 1946, 2002.
[18] N. P. Smart, How Secure Are Elliptic Curves over Composite Extension Fields? Technical Report CSTR00017, Dept. of Computer Science, Univ. of Bristol, Nov. 2000.
[19] N.P. Smart, A Comparison of Different Finite Fields for Use in Elliptic Curve Cryptosystems Technical Report CSTR00007, Dept. of Computer Science, Univ. of Bristol, June 2000.