The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.09 - September (2004 vol.53)
pp: 1097-1105
Berk Sunar , IEEE Computer Society
ABSTRACT
We introduce a generalized method for constructing subquadratic complexity multipliers for even characteristic field extensions. The construction is obtained by recursively extending short convolution algorithms and nesting them. To obtain the short convolution algorithms, the Winograd short convolution algorithm is reintroduced and analyzed in the context of polynomial multiplication. We present a recursive construction technique that extends any d point multiplier into an n=d^k point multiplier with area that is subquadratic and delay that is logarithmic in the bit-length n. We present a thorough analysis that establishes the exact space and time complexities of these multipliers. Using the recursive construction method, we obtain six new constructions, among which one turns out to be identical to the Karatsuba multiplier. All six algorithms have subquadratic space complexities and two of the algorithms have significantly better time complexities than the Karatsuba algorithm.
INDEX TERMS
Bit-parallel multipliers, finite fields, Winograd convolution.
CITATION
Berk Sunar, "A Generalized Method for Constructing Subquadratic Complexity GF(2^k) Multipliers", IEEE Transactions on Computers, vol.53, no. 9, pp. 1097-1105, September 2004, doi:10.1109/TC.2004.52
22 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool