
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Berk Sunar, "A Generalized Method for Constructing Subquadratic Complexity GF(2^k) Multipliers," IEEE Transactions on Computers, vol. 53, no. 9, pp. 10971105, September, 2004.  
BibTex  x  
@article{ 10.1109/TC.2004.52, author = {Berk Sunar}, title = {A Generalized Method for Constructing Subquadratic Complexity GF(2^k) Multipliers}, journal ={IEEE Transactions on Computers}, volume = {53}, number = {9}, issn = {00189340}, year = {2004}, pages = {10971105}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2004.52}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Generalized Method for Constructing Subquadratic Complexity GF(2^k) Multipliers IS  9 SN  00189340 SP1097 EP1105 EPD  10971105 A1  Berk Sunar, PY  2004 KW  Bitparallel multipliers KW  finite fields KW  Winograd convolution. VL  53 JA  IEEE Transactions on Computers ER   
[1] R.E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, Mass.: AddisonWesley, 1984.
[2] R.E. Blahut, Theory and Practice of Error Control Codes. Reading, Mass.: AddisonWesley, 1983.
[3] ReedSolomon Codes and Their Applications, S.B. Wicker and V.K.Bhargava, eds. IEEE Press, 1994.
[4] E.R. Berlekamp, Algebraic Coding Theory. New York: McGrawHill, 1968.
[5] W.W. Peterson and E.J. Weldon Jr., ErrorCorrecting Codes. Cambrdige, Mass.: MIT Press, 1972.
[6] S.W. Golomb, Shift Register Sequences. San Francisco: HoldenDay, 1967.
[7] R.J. McEliece, Finite Fields for Computer Scientists and Engineers, second ed. Kluwer Academic, 1989.
[8] I.F. Blake, X.H. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghgoobin, Applications of Finite Fields. Kluwer Academic, 1993.
[9] W. Geiselmann and D. Gollmann, SelfDual Bases in$F_{q^n}$ Designs, Codes, and Cryptographym vol. 3, pp. 333345, 1993.
[10] S.T.J. Fenn, M. Benaissa, and D. Taylor, $GF(2^m)$Multiplication and Division over the Dual Basis IEEE Trans. Computers, vol. 45, no. 3, pp. 319327, Mar. 1996.
[11] S.T.J. Fenn, M. Benaissa, and D. Taylor, Finite Field Inversion over the Dual Basis IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 134136, Mar. 1996.
[12] E.D. Mastrovito, VLSI Architectures for Computation in Galois Fields PhD thesis, Dept. of Electrical Eng., Linköping Univ., Sweden, 1991.
[13] E.D. Mastrovito, VLSI Design for Multiplication over Finite Fields$GF(2^m)$ Proc. Applied Algebra, Algebraic Algorithms and ErrorCorrecting Codes (AAECC6), pp. 297309, Mar. 1989.
[14] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962971, Aug. 1992.
[15] C. Paar, Efficient VLSI Architectures for BitParallel Computation in Galois Fields PhD thesis (English translation), Inst. for Experimental Math., Univ. of Essen, Germany, June 1994.
[16] Ç.K. Koç and B. Sunar, LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[17] B. Sunar and Ç.K. Koç, Mastrovito Multiplier for All Trinomials IEEE Trans. Computers, vol. 48, no. 5, pp. 522527, May 1999.
[18] B. Sunar and Ç.K. Koç, An Efficient Optimal Normal Basis Type II Multiplier IEEE Trans. Computers, vol. 50, no. 1, pp. 8387, Jan. 2001.
[19] A. Karatsuba and Y. Ofman, Multiplication of Multidigit Numbers on Automata Soviet PhysicsDoklady (English translation), vol. 7, no. 7, pp. 595596, 1963.
[20] S. Winograd, Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field of Constants Math. Systems Theory, vol. 10, pp. 169180, 1977.
[21] S. Winograd, Arithmetic Complexity of Computations. SIAM, 1980.
[22] M. Jacobson, A.J. Menezes, and A. Stein, Solving Elliptic Curve Discrete Logarithm Problems Using Weil Descent CACR Technical Report CORR200131, Univ. of Waterloo, May 2001.