
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Arash ReyhaniMasoleh, M. Anwar Hasan, "Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over GF(2^{m})," IEEE Transactions on Computers, vol. 53, no. 8, pp. 945959, August, 2004.  
BibTex  x  
@article{ 10.1109/TC.2004.47, author = {Arash ReyhaniMasoleh and M. Anwar Hasan}, title = {Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over GF(2^{m})}, journal ={IEEE Transactions on Computers}, volume = {53}, number = {8}, issn = {00189340}, year = {2004}, pages = {945959}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2004.47}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over GF(2^{m}) IS  8 SN  00189340 SP945 EP959 EPD  945959 A1  Arash ReyhaniMasoleh, A1  M. Anwar Hasan, PY  2004 KW  Finite or Galois field KW  Mastrovito multiplier KW  allone polynomial KW  polynomial basis KW  trinomial KW  pentanomial and equallyspaced polynomial. VL  53 JA  IEEE Transactions on Computers ER   
Abstract—Representing the field elements with respect to the polynomial (or standard) basis, we consider bit parallel architectures for multiplication over the finite field
[1] G.B. Agnew, T. Beth, R.C. Mullin, and S.A. Vanstone, Arithmetic Operations in$GF(2^m)$ J. Cryptology, vol. 6, pp. 313, 1993.
[2] G.B. Agnew, R.C. Mullin, and S.A. Vanstone, An Implementation of Elliptic Curve Cryptosystems over$F_{2^{155}}$ IEEE J. Selected Areas in Comm., vol. 11, no. 5, pp. 804813, June 1993.
[3] T.C. Bartee and D.I. Schneider, Computation with Finite Fields Information and Computers, vol. 6, pp. 7998, Mar. 1963.
[4] E.R. Berlekamp, Algebraic Coding Theory. McGrawHill, 1968.
[5] R.E. Blahut, Fast Algorithms for Digital Signal Processing. AddisonWesley, 1985.
[6] T.A. Gulliver, M. Serra, and V.K. Bhargava, The Generation of Primitive Polynomials in$GF(q)$with Independent Roots and Their Application for Power Residue Codes, VLSI Testing and Finite Field Multipliers Using Normal Bases Int'l J. Electronics, vol. 71, no. 4, pp. 559576, 1991.
[7] J.H. Guo and C.L. Wang, Systolic Array Implementation of Euclid's Algorithm for Inversion and Division in$GF(2^m)$ IEEE Trans. Computers, vol. 47, no. 10, pp. 11611167, Oct. 1998.
[8] A. Halbutogullari and C.K. Koc, Mastrovito Multiplier for General Irreducible Polynomials IEEE Trans. Computers, vol. 49, no. 5, pp. 503518, May 2000.
[9] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962971, Aug. 1992.
[10] T. Itoh and S. Tsujii, Structure of Parallel Mutipliers for a Class of Fields$GF(2^m)$ Information and Computation, vol. 83, pp. 2140, 1989.
[11] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications. Cambridge Univ. Press, 1994.
[12] E.D. Mastrovito, VLSI Designs for Multiplication over Finite Fields$GF(2^m)$ Proc. Sixth Symp. Applied Algebra, Algebraic Algorithms, and Error Correcting Codes (AAECC6), pp. 297309, July 1988.
[13] E.D. Mastrovito, VLSI Architectures for Computation in Galois Fields PhD thesis, Linkoping Univ., Linkoping, Sweden, 1991.
[14] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.
[15] Nat'l Inst. of Standards and Tech nology, Digital Signature Standard, FIPS Publication 1862, Jan. 2000.
[16] I.S. Reed and X. Chen, ErrorControl Coding for Data Networks. Kluwer Academic, 1999.
[17] A. ReyhaniMasoleh and M.A. Hasan, A New Efficient Architecture of Mastrovito Multiplier over$GF(2^m)$ Proc. 20th Biennial Symp. Comm., pp. 5963, May 2000.
[18] A. ReyhaniMasoleh and M.A. Hasan, Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over$GF(2^{m})$ Technical Report CORR 200319, Dept. of C&O, Univ. of Waterloo, Canada, July 2003.
[19] A. ReyhaniMasoleh and M.A. Hasan, On Low Complexity Bit Parallel Polynomial Basis Multipliers Proc. Cryptographic Hardware and Embedded Systems (CHES 2003), pp. 189202, Sept. 2003.
[20] F. RodriguezHenriquez and C.K. Koc, Parallel Multipliers Based on Special Irreducible Pentanomials IEEE Trans. Computers, vol. 52, no. 12, pp. 15351542, Dec. 2003.
[21] P.A. Scott, S.J. Simmons, S.E. Tavares, and L.E. Peppard, Architectures for Exponentiation in$GF(2^m)$ IEEE J. Selected Areas in Comm., vol. 6, no. 3, pp. 578586, Apr. 1988.
[22] G. Seroussi, Table of LowWeight Binary Irreducible Polynomials HP Labs Tech. Report HPL98135, Aug. 1998.
[23] L. Song and K.K. Parhi, Low Complexity Modified Mastrovito Multipliers over Finite Fields$GF(2^M)$ Proc. IEEE Int'l Symp. Circuits and Systems (ISCAS99), pp. 508512, 1999.
[24] B. Sunar and Ç.K. Koç, Mastrovito Multiplier for All Trinomials IEEE Trans. Computers, vol. 48, no. 5, pp. 522527, May 1999.
[25] H. Wu, BitParallel Finite Field Multiplier and Squarer Using Polynomial Basis IEEE Trans. Computers, vol. 51, no. 7, pp. 750758, July 2002.
[26] H. Wu and M.A. Hasan, Efficient Exponentiation of a Primitive Root in$GF(2^m)$ IEEE Trans. Computers, vol. 46, no. 2, pp. 162172, Feb. 1997.
[27] Y. Wu and M.I. Adham, ScanBased BIST Fault Diagnosis IEEE Trans. ComputerAided Design of Integrated Circuits and Systems, vol. 18, no. 2, pp. 203211, Feb. 1999.
[28] T. Zhang and K.K. Parhi, Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials IEEE Trans. Computers, vol. 50, no. 7, pp. 734748, July 2001.