
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
RenCang Li, "Near Optimality of Chebyshev Interpolation for Elementary Function Computations," IEEE Transactions on Computers, vol. 53, no. 6, pp. 678687, June, 2004.  
BibTex  x  
@article{ 10.1109/TC.2004.15, author = {RenCang Li}, title = {Near Optimality of Chebyshev Interpolation for Elementary Function Computations}, journal ={IEEE Transactions on Computers}, volume = {53}, number = {6}, issn = {00189340}, year = {2004}, pages = {678687}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2004.15}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Near Optimality of Chebyshev Interpolation for Elementary Function Computations IS  6 SN  00189340 SP678 EP687 EPD  678687 A1  RenCang Li, PY  2004 KW  Elementary function computation KW  libm KW  Chebyshev Interpolation KW  Remez KW  best polynomial KW  accuracy. VL  53 JA  IEEE Transactions on Computers ER   
Abstract—A common practice for computing an elementary transcendental function in an libm implementation nowadays has two phases: reductions of input arguments to fall into a tiny interval and polynomial approximations for the function within the interval. Typically, the interval is made tiny enough so that polynomials of very high degree aren't required for accurate approximations. Often, approximating polynomials as such are taken to be the
[1] J. Harrison, T. Kubaska, S. Story, and P.T.P. Tang, The Computation of Transcendental Functions on the IA64 Architecture Intel Technology J., no. Q4, pp. 17, Nov. 1999.
[2] R.C. Li, S. Boldo, and M. Daumas, Theorems on Efficient Argument Reductions Proc. 16th IEEE Symp. Computer Arithmetic, June 2003.
[3] P. Markstein, IA64 and Elementary Functions: Speed and Precision, 2000.
[4] J.M. Muller, Elementary Functions: Algorithms and Implementation. Boston, Basel, Berlin: Birkhåuser, 1997.
[5] K.C. Ng, Argument Reduction for Huge Arguments: Good to the Last Bit SunPro, technical report, 1992, http:/www.validlab. com/.
[6] M.J.D. Powell, On the Maximum Errors of Polynomial Approximations Defined by Interpolation and by Least Squares Criteria The Computer J., vol. 9, no. 4, pp. 404407, Feb. 1967.
[7] P.T.P. Tang, TableDriven Implementation of the Exponential Function in IEEE FloatingPoint Arithmetic ACM Trans. Math. Software, vol. 15, no. 2, pp. 144157, June 1989.
[8] P.T.P. Tang, TableDriven Implementation of the Logarithm Function in IEEE FloatingPoint Arithmetic ACM Trans. Math. Software, vol. 16, no. 4, pp. 378400, Dec. 1990.
[9] P.T.P. Tang, “TableLookup Algorithms for Elementary Functions and Their Error Analysis,” Proc. 10th Symp. Computer Arithmetic, pp. 232236, 1991.
[10] P.T.P. Tang, TableDriven Implementation of theexpm1Function in IEEE FloatingPoint Arithmetic ACM Trans. Math. Software, vol. 18, no. 2, pp. 211222, June 1992.
[11] E. Remez, Sur un ProcédéConvergent d'Approximations Successives pour Déterminer les Polynômes d'Approximation C.R. Académie des Sciences, Paris, vol. 198, 1934.
[12] R.C. Li, P. Markstein, J. Okada, and J. Thomas, The libm Library and FloatingPoint Arithmetic in HPUX for Itanium II June 2000, http://h21007.www2.hp.com/dspp/files/unprotected/ ItaniumFP_White_Paper_v2.pdf.
[13] E.W. Cheney, Approximation Theory, second ed. Providence, R.I.: AMS, 1981.
[14] R.A. DeVore and G.G. Lorentz, Constructive Approximation. Berlin, Heidelberg, New York: SpringerVerlag, 1993.
[15] G.G. Lorentz, Approximation of Functions, second ed. New York: Chelsea Publishing, 1986.
[16] INTEL, Intel IA64 Architecture Software Developer's Manual. Intel Corp., 2002, vol. 3: Instruction Set Reference, document No. 245319002,http://developer.intel.com/design/itanium/ manualsindex.htm.
[17] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I.A Stegun, eds., ninth ed. New York: Dover Publications, 1970.