
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
David Harris, "An Exponentiation Unit for an OpenGL Lighting Engine," IEEE Transactions on Computers, vol. 53, no. 3, pp. 251258, March, 2004.  
BibTex  x  
@article{ 10.1109/TC.2004.1261833, author = {David Harris}, title = {An Exponentiation Unit for an OpenGL Lighting Engine}, journal ={IEEE Transactions on Computers}, volume = {53}, number = {3}, issn = {00189340}, year = {2004}, pages = {251258}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2004.1261833}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  An Exponentiation Unit for an OpenGL Lighting Engine IS  3 SN  00189340 SP251 EP258 EPD  251258 A1  David Harris, PY  2004 KW  Powering KW  exponentiation KW  computer arithmetic KW  OpenGL hardware acceleration KW  table lookups KW  table complexity KW  bipartite tables. VL  53 JA  IEEE Transactions on Computers ER   
Abstract—The OpenGL geometry pipeline lighting stage requires raising a number in the range
[1] M. Segal and K. Akeley, The OpenGL Graphics System: A Specification (Version 1.4), Silicon Graphics, 2002,http:/www. opengl.org.
[2] M. Woo et al., OpenGL Programming Guide, third ed. Reading, Mass.: Addison Wesley, 1999.
[3] nVIDIA Technical Brief, Transformation and Lighting NVIDIA Corp., 1999.
[4] ANSI/IEEE Std. 7541985, Binary FloatingPoint Arithmetic, IEEE Press, Piscataway, N.J., 1985 (also called ISO/IEC 559).
[5] J. Foley, A. Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice. Reading, Mass.: Addison Wesley, 1996.
[6] J. Muller, Elementary Functions. Boston: Birkhauser, 1997.
[7] M. Overton, Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia: SIAM, 2001.
[8] P. Tang, TableDriven Implementation of the Exponential Function in IEEE Floating Point Arithmetic ACM Trans. Math. Software, vol. 15, no. 2, pp. 144157, June 1989.
[9] P.T.P. Tang, “TableLookup Algorithms for Elementary Functions and Their Error Analysis,” Proc. 10th Symp. Computer Arithmetic, pp. 232236, 1991.
[10] N. Takagi, “Powering by a Table LookUp and a Multiplication with Operand Modification,” IEEE Trans. Computers, vol. 47, no. 11, pp. 12161222, Nov. 1998.
[11] J.A. Piñeiro, J.D. Bruguera, and J.M. Muller, “Faithful Powering Computation Using Table LookUp and a Fused Accumulation Tree,” Proc. IEEE 15th Int'l Symp. Computer Arithmetic (ARITH15), pp. 4047, 2001.
[12] W. Cody and W. Wait, Software Manual for the Elementary Functions. Englewood Cliffs, N.J.: PrenticeHall, 1980.
[13] H. Shin, J. Lee, and L. Kim, A Hardware Cost Minimized Fast Phong Shader IEEE Trans. VLSI Systems, vol. 9, no. 2, pp. 297304, Apr. 2001.
[14] C. Chen and C. Lee, A Cost Effective Lighting Processor for 3D Graphics Applications Proc. IEEE Int'l Conf. Image Processing, vol. 2, pp. 792796, 1999.
[15] Y. Kwon, I. Park, and C. Kyung, A Hardware Accelerator for the Specular Intensity of Phong Illumination Model in 3Dimensional Graphics Proc. ACM Asia/South Pacific Design Automation Conf., pp. 559546, 2000.
[16] J.N. Coleman, E.I. Chester, C.I. Softley, and J. Kadlec, “Arithmetic on the European Logarithmic Microprocessor,” IEEE Trans. Computers, vol. 49, no. 7, pp. 702715, July 2000.
[17] H. Hassler and N. Takagi, "Function Evaluation by Table LookUp and Addition," Proc. 12th Symp. Computer Arithmetic, pp. 1016, July 1995.
[18] D. DasSarma and D.W. Matula, “Faithful Bipartite ROM Reciprocal Tables,” Proc. 12th Symp. Computer Arithmetic, pp. 1728, 1995.
[19] M.J. Schulte and J.E. Stine, Approximating Elementary Functions with Symmetric Bipartite Tables IEEE Trans. Computers, vol. 48, no. 8, pp. 842847, Aug. 1999.
[20] J. Muller, A Few Results on TableBased Methods Reliable Computing, vol. 5, no. 3, pp. 279288, 1999.
[21] F. Dinechin and A. Tisserand, Some Improvements on Multipartite Table Methods Proc. 15th Symp. Computer Arithmetic, pp. 128135, 2001.
[22] LSI Logic, G12p CellBased ASIC Products, 1999.
[23] Harvey Mudd College Open Source Floating Point Project http://www.hmc.educhips, 2000.
[24] J. Stine and M. Schulte, The Symmetric Table Addition Method for Accurate Function Approximation J. VLSI Signal Processing, vol. 21, no. 2, pp. 167177, 1999.