
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Berk Sunar, Erkay Savas, Çetin K. Ko?, "Constructing Composite Field Representations for Efficient Conversion," IEEE Transactions on Computers, vol. 52, no. 11, pp. 13911398, November, 2003.  
BibTex  x  
@article{ 10.1109/TC.2003.1244937, author = {Berk Sunar and Erkay Savas and Çetin K. Ko?}, title = {Constructing Composite Field Representations for Efficient Conversion}, journal ={IEEE Transactions on Computers}, volume = {52}, number = {11}, issn = {00189340}, year = {2003}, pages = {13911398}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2003.1244937}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Constructing Composite Field Representations for Efficient Conversion IS  11 SN  00189340 SP1391 EP1398 EPD  13911398 A1  Berk Sunar, A1  Erkay Savas, A1  Çetin K. Ko?, PY  2003 KW  Composite and binary fields KW  primitive element KW  change of basis KW  AES. VL  52 JA  IEEE Transactions on Computers ER   
Abstract—This paper describes a method of construction of a composite field representation from a given binary field representation. We derive the conversion (change of basis) matrix. The special case of when the degree of the ground field is relatively prime to the extension degree, where the irreducible polynomial generating the composite field has its coefficients from the binary prime field rather than the ground field, is also treated. Furthermore, certain generalizations of the proposed construction method, e.g., the use of nonprimitive elements and the construction of composite fields with special irreducible polynomials, are also discussed. Finally, we give storageefficient conversion algorithms between the binary and composite fields when the degree of the ground field is relatively prime to the extension degree.
[1] J.V. Brawley and G.E. Schnibben, Infinite Algebraic Extensions of Finite Fields. Providence, R.I.: Am. Math. Soc., 1989.
[2] B.S. Kaliski Jr. and M. Liskov, Efficient Finite Field Basis Conversion Involving Dual Bases Cryptographic Hardware and Embedded Systems, Ç.K. Koçand C. Paar, eds., pp. 135143, Berlin: SpringerVerlag, 1999.
[3] B.S. Kaliski Jr. and Y.L. Yin, Methods and Apparatuses for Efficient Finite Field Conversion US Patent Number 5,854,759, 29 Dec. 1998.
[4] B.S. Kaliski Jr. and Y.L. Yin, StorageEfficient Finite Field Basis Conversion Selected Areas in Cryptography, S. Tavares and H. Meijer, eds., pp. 8193, Berlin: SpringerVerlag, 1998.
[5] R. Lidl and H. Niederreiter,An Introduction to Finite Fields and Their Applications.Cambridge: Cambridge Univ. Press, 1986.
[6] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Boston: Kluwer Academic, 1993.
[7] M. Jacobson, A.J. Menezes, and A. Stein, Solving Elliptic Curve Discrete Logarithm Problems Using Weil Descent CACR Technical Technical Report CORR200131, Univ. of Waterloo, May 2001.
[8] IEEE Standard, Specifications for Public Key Cryptography IEEE P1363, 2000.
[9] IEEE Standard, Specifications for Public Key Cryptography: Additional Techniques IEEE P1363a, working document, 2001.
[10] C. Paar, Efficient VLSI Architectures for Bit Parallel Computation in Galois Fields PhD thesis, Universität GH Essen, VDI Verlag, 1994.
[11] C. Paar, P. Fleishmann, and P. SoriaRodriguez, Fast Arithmetic for PublicKey Algorithms in Galois Fields with Composite Exponents IEEE Trans. Computers, vol. 48, no. 10, pp. 10251034, Oct. 1999.
[12] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi, “Efficient Rijndael Encryption Implementation with Composite Field Arithmetic,” Proc. Workshop Cryptographic Hardware and Embedded Systems—CHES 2001, pp. 171184, 2001.
[13] R. Schroeppel, S. O'Malley, H. Orman, and O. Spatscheck, “A Fast Software Implementation for Arithmetic Operations in GF($2^n$),” Proc. Advances in Cryptology–CRYPTO '95, pp. 4356, 1995.
[14] J.H. Silverman, “Fast Multiplication in Finite Fields$\big. {\rm GF}(2^N)\bigr.$,” Proc. Cryptographic Hardware and Embedded Systems, First Int'l Workshop (CHES '99), ÇK. Koçand C. Paar, eds., pp. 122134, 1999.
[15] E. De Win, A. Bosselaers, S. Vanderberghe, P. De Gersem, and J. Vandewalle, “A Fast Software Implementation for Arithmetic Operations in$\big. {\rm GF(2^n)}\bigr.$,” Advances in Cryptology, Proc. Asiacrypt '96, K. Kim and T. Matsumoto, eds., pp. 6576, 1996.
[16] H. Wu, Low Complexity BitParallel Finite Field Arithmetic Using Polynomial Basis Cryptographic Hardware and Embedded Systems, Ç.K. Koçand C. Paar, eds., pp. 280291, Berlin: SpringerVerlag, 1999.
[17] H. Wu, M.A. Hasan, and I.F. Blake, “Highly Regular Architectures for Finite Field Computation Using Redundant Basis,” Proc. Cryptographic Hardware and Embedded Systems, First Int'l Workshop (CHES '99), ÇK. Koçand C. Paar, eds., pp. 269279, 1999.
[18] A. ReyhaniMasoleh and M.A. Hasan, On Efficient Normal Basis Multiplication Proc. Indocrypt 2000, pp. 213224, Dec. 2000.
[19] S. Oh, C.H. Kim, J. Lim, and D.H. Cheon, Efficient Normal Basis Multipliers in Composite Fields IEEE Trans. Computers, vol. 49, no. 10, pp. 11331138, Oct. 2000.
[20] American Bankers Assoc., X9.62 American National Standards Institute Standard, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) Jan. 1999.