This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Edge Disjoint Hamiltonian Cycles in k-Ary n-Cubes and Hypercubes
October 2003 (vol. 52 no. 10)
pp. 1271-1284
Myung M. Bae, IEEE Computer Society
Bella Bose, IEEE

Abstract—Solutions for decomposing a higher dimensional torus to edge disjoint lower dimensional tori, in particular, edge disjoint Hamiltonian cycles are obtained based on the coding theory approach. First, Lee distance Gray codes in Z_k^n are presented and then it is shown how these codes can directly be used to generate edge disjoint Hamiltonian cycles in k-ary n-cubes. IFurther, some new classes of binary Gray codes are designed from these Lee distance Gray codes and, using these new classes of binary Gray codes, edge disjoint Hamiltonian cycles in hypercubes are generated.

[1] B. Alspach, J.-C. Bermond, and D. Sotteau, Decomposition into Cycles I: Hamiltonian Decompositions Cycles and Rays, G. Hahn, G. Sabidussi, and R.E. Woodrow, eds., pp. 9-18, 1990.
[2] M. Bae, Resource Placement, Data Rearrangement, and Hamiltonian Cycles in Torus Networks PhD thesis, Dept. of Computer Science, Oregon State Univ., Nov. 1996.
[3] J.-C. Bermond, O. Favaron, and M. Maheo, Hamiltonian Decomposition of Cayley Graphs of Degree 4 J. Combinational Theory, Series B, vol. 46, pp. 142-153, 1989.
[4] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Prentice Hall, 1989.
[5] L.N. Bhuyan and D.P. Agrawal, Generalized Hypercube and Hyperbus Structures for a Computer Network IEEE Trans. Computers, vol. 33, no. 4, pp. 323-333, Apr. 1984.
[6] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam, B. Moore, C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb iWarp: An Integrated Solution to High-Speed Parallel Computing, Proc. 1988 Int'l Conf. Supercomputing, pp. 330-339., IEEE CS and ACM SIGARCH, Orlando, Fla., Nov. 1988.
[7] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, "Lee Distance and Topological Properties of k-Ary n-Cubes," IEEE Trans. Computers, vol. 44, no. 8, pp. 1,021-1,030, Aug. 1995.
[8] B. Broeg, B. Bose, and V. Lo, Lee Distance Gray Codes and the Torus Telecomm. Systems, High Performance Computing and Interconnection Networks, pp. 21-33, Oct. 1998.
[9] M.Y. Chan and S.J. Lee, On the Existence of Hamiltonian Circuits in Faulty Hypercubes SIAM J. Discrete Math., vol. 4, no. 4, pp. 511-527, Nov. 1991.
[10] P. Cull, Tours of Graphs, Digraphs, and Sequential Machines IEEE Trans. Computers, vol. 29, no. 1, pp. 50-54, Jan. 1980.
[11] P. Cull and S.M. Larson, Wormhole Routing Algorithms for Twisted Cube Networks Proc. Sixth IEEE Symp. Parallel and Distributed Processing, pp. 696-703, 1994.
[12] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Approach. IEEE Press, 1997.
[13] M.F. Foregger, Hamiltonian Decompositions of Products of Cycles Discrete Math., vol. 24, pp. 251-260, 1978.
[14] Y. Huang, On Hamiltonian Decompositions of Cayley Graphs on Cyclic Groups Annals New York Academy of Sciences, vol. 576, pp. 250-258, 1989.
[15] V. Kumar et al., Introduction to Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cummings, 1994.
[16] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes. Morgan Kaufmann, 1992.
[17] W. Oed, Massively Parallel Processor System CRAY T3D technical report, Cray Research GmbH, Nov. 1993.
[18] C.L. Seitz et al., Submicron Systems Architecture Project Semi-Annual Technical Report Technical Report Caltec-CS-TR-88-18, California Inst. of Tech nology, Nov. 1988.
[19] R. Stong, Hamiltonian Decomposition of Cartesian Products of Graphs Discrete Math., vol. 90, pp. 169-190, 1991.
[20] Tera Computer Systems, Overview of the Tera Parallel Computer 1993.

Index Terms:
k-ary n-cubes, hypercube, Lee distance, Lee distance Gray codes, binary Gray codes, Hamiltonian cycle.
Citation:
Myung M. Bae, Bella Bose, "Edge Disjoint Hamiltonian Cycles in k-Ary n-Cubes and Hypercubes," IEEE Transactions on Computers, vol. 52, no. 10, pp. 1271-1284, Oct. 2003, doi:10.1109/TC.2003.1234525
Usage of this product signifies your acceptance of the Terms of Use.