
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Laurence E. LaForge, Kirk F. Korver, M. Sami Fadali, "What Designers of Bus and Network Architectures Should Know about Hypercubes," IEEE Transactions on Computers, vol. 52, no. 4, pp. 525544, April, 2003.  
BibTex  x  
@article{ 10.1109/TC.2003.1190592, author = {Laurence E. LaForge and Kirk F. Korver and M. Sami Fadali}, title = {What Designers of Bus and Network Architectures Should Know about Hypercubes}, journal ={IEEE Transactions on Computers}, volume = {52}, number = {4}, issn = {00189340}, year = {2003}, pages = {525544}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2003.1190592}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  What Designers of Bus and Network Architectures Should Know about Hypercubes IS  4 SN  00189340 SP525 EP544 EPD  525544 A1  Laurence E. LaForge, A1  Kirk F. Korver, A1  M. Sami Fadali, PY  2003 KW  Hypercube fault tolerance KW  hypercube latency KW  configuration architectures KW  performability KW  quorums KW  Hamming graphs KW  Kcubes KW  Moore graphs KW  Moore Bound KW  Ccubes KW  Lee distance. VL  52 JA  IEEE Transactions on Computers ER   
Abstract—We quantify why, as designers, we should prefer cliquebased hypercubes (
What
We solve (1) for
[1] J.R. Armstrong and F.G. Gray, “Fault Diagnosis in a BooleannCube of Microprocessors,” IEEE Trans. Computers, vol. 30, no. 8, pp. 587590, Aug. 1981.
[2] A. Avizienis, “On the Hundred Year Spacecraft,” Proc. First NASA/DOD Workshop Evolvable Hardware, pp. 233239, July 1999.
[3] A. Avizienis, “Toward Systematic Design of FaultTolerant Systems,” Computer, pp. 5158, Apr. 1997.
[4] P. Banerjee, S.Y. Kuo, and W.K. Fuchs, “Reconfigurable CubeConnected Cycles Architectures,” Proc. 16th Int'l Symp. Fault Tolerant Computing, pp. 286291, July 1986.
[5] J.C. Bermond and C. Delorme,“Strategies for interconnection networks: Some methods from graphtheory,” J. Parallel and Distributed Computing, vol. 3, pp. 433449, 1986.
[6] J.C. Bermond and B. Bollobás, “The Diameter of Graphs—A Survey,” Congressus Numerantium, vol. 32, pp. 337, 1981.
[7] N. Biggs, Algebraic Graph Theory, second ed. New York: Cambridge Univ. Press, 1996.
[8] B. Bollobás, Extremal Graph Theory. London: Academic Press, 1978.
[9] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, "Lee Distance and Topological Properties of kAry nCubes," IEEE Trans. Computers, vol. 44, no. 8, pp. 1,0211,030, Aug. 1995.
[10] A.E. Brouwer, A.M. Cohen, and A. Neumaier, DistanceRegular Graphs. Berlin: SpringerVerlag, 1989.
[11] G. Chartrand and L. Lesniak, Graphs and Digraphs, second ed. Belmont, Calif.: Wadsworth, Inc., 1986.
[12] Y.Y. Chen and S.J. Upadhyaya, “Reliability, Reconfiguration, and Spare Allocation Issues in Binary Tree Architectures Based on MultipleLevel Redundancy,” IEEE Trans. Computers, vol. 42, no. 6, pp. 713723, June 1993.
[13] S. Dutt and J.P. Hayes, “On Designing and Reconfiguring KFaultTolerant Tree Architectures,” IEEE Trans. Computers, vol. 39, no. 4, pp. 490–503, Apr. 1990.
[14] R.W. Hamming, Coding and Information Theory.Englewood Cliffs, N.J.: Prentice Hall, 1980.
[15] F. Harary, “The Maximum Connectivity of a Graph,” Proc. Nat'l Academy of Science, vol. 48, pp. 11421146, 1962.
[16] B.R. Haverkort and I.G. Niemegeers, “Performability Modelling Tools and Techniques,” Performance Evaluation, vol. 25, pp. 1740, 1996.
[17] J.P. Hayes, “A Graph Model for Fault Tolerant Computing Systems,” IEEE Trans. Computers, vol. 25, no. 9, pp. 875884, Sept. 1976.
[18] J. Hecht, “Breaking the Metro Bottleneck,” Technology Rev., pp. 4853, June 2001.
[19] A.J. Hoffman and R.R. Singleton, “On Moore Graphs with Diameters 2 and 3,” IBM J. Research and Development, vol. 4, pp. 497504, 1960.
[20] A. Itai, Y. Perl, and Y. Shiloach, “The Complexity of Finding Maximum Disjoint Paths with Length Constraints,” Networks, vol. 12, pp. 277286, 1982.
[21] J.M. Kumar and L.M. Patnaik, "Extended Hypercube: A Hierarchical Interconnection Network of Hypercubes," IEEE Trans. Parallel and Distributed Systems, pp. 4557, 1992.
[22] C.L. Kwan and S. Toida, “Optimal FaultTolerant Realizations of Some Classes of Hierarchical Tree Systems,” Proc. 11th Ann. Symp. FaultTolerant Computing, pp. 176178, June 1981.
[23] L.E. LaForge, “SelfHealing Avionics for Starships,” Proc. IEEE 2000 Aerospace Conf., Mar. 2000. http://faculty.erau.edulaforgel/.
[24] L.E. LaForge, “Architectures and Algorithms for SelfHealing Autonomous Spacecraft,” Phase I report, NASA Inst. for Advanced Concepts, Jan. 2000, revised Feb. 2000. http://faculty.erau.edulaforgel/andhttp:/niac.usra.edu.
[25] L.E. LaForge, “Fault Tolerant Physical Interconnection of X2000 Computational Avionics,” document number JPL D16485, Jet Propulsion Laboratory, Pasadena, Calif., Aug. 1998, revised Oct. 1999. http://knowledge.jpl.nasa.govadssdlib/andhttp://faculty.erau.edulaforgel/.
[26] L.E. LaForge, “Configuration of Locally Spared Arrays in the Presence of Multiple Fault Types,” IEEE Trans. Computers, vol. 48, no. 4, pp. 398416, Apr. 1999. .
[27] L.E. LaForge, K. Huang, and V.K. Agarwal, "Almost Sure Diagnosis of Almost Every Good Element," IEEE Trans. Computers, vol. 43, pp. 295305, 1994.
[28] L.E. LaForge and K.F. Korver, “Algorithmic Method and Computer System for Synthesizing SelfHealing Networks, Bus Structures, and Connectivities,” US Patent 60/261,863 pending, Jan. 2001.
[29] L.E. LaForge and K.F. Korver, “Mutual Test and Diagnosis: Architectures and Algorithms for Spacecraft Avionics,” Proc. IEEE 2000 Aerospace Conf., Mar. 2000.
[30] L.E. LaForge and K.F. Korver, “GraphTheoretic Fault Tolerance for Spacecraft Bus Avionics,” Proc. IEEE 2000 Aerospace Conf., Mar. 2000.
[31] T. Leighton and C.E. Leiserson, “WaferScale Integration of Systolic Arrays,” IEEE Trans. Computers, vol. 34, no. 5, pp. 448461, May 1985.
[32] D.G. Leeper, “A LongTerm View of ShortRange Wireless,” Computer, pp. 3944, June 2001.
[33] E.F. Moore and C.E. Shannon, “Reliable Circuits Using Less Reliable Relays, Part I,” J. Franklin Inst., vol. 262, pp. 191208, Sept. 1956.
[34] U.S.R. Murty and K. Vijayan, “On Accessibility in Graphs,” Sakhya Ser. A, vol. 26, pp. 299302, 1964.
[35] H. Nabli and B. Sericola, “Performability Analysis: A New Algorithm,” IEEE Trans. Computers, vol. 45, no. 4, pp. 491495, Apr. 1996.
[36] O. Ore, Theory of Graphs. Providence: Am. Math. Soc. Publications, 1962.
[37] F.P. Preparata and J. Vuillemin, “The CubeConnected Cycles: A Versatile Network for Parallel Computation,” Comm ACM, vol. 24, no. 5, pp. 300309, 1981.
[38] M. Sampels, Email communication to L.E. LaForge, Nov. 1999.
[39] M. Sampels, “Large Networks with Small Diameter,” Proc. GraphTheoretic Concepts in Computer Science, 23rd Int'l Workshop, R.H. Möhring, ed., pp. 288302, Oct. 1997.
[40] J.W. Surbelle and R.J. Tarjan, “A Quick Method for Finding Shortest Pairs of Disjoint Paths,” Networks, vol. 14, pp. 325336, 1984.
[41] G.B. Thomas, Calculus and Analytic Geometry, fourth ed., p. 623. Reading, Mass.: Addison Wesley, 1969.
[42] J. Wu, “Safety Levels—An Efficient Mechanism for Achieving Reliable Broadcasting in Hypercubes,” IEEE Trans. Computers, vol. 44, no. 5, pp. 702706, May 1995.
[43] M.R. Zargham, Computer Architecture—Single and Parallel Systems. Upper Saddle River, N.J.: Prentice Hall, 1996.
[44] S.Q. Zheng and S. Lattifi, “Optimal Simulation of Linear Multiprocessor Architectures on MultiplyTwisted Cube Using Generalized Gray Code,” IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 6, pp. 612619, June 1996.