
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Akashi Satoh, Kohji Takano, "A Scalable DualField Elliptic Curve Cryptographic Processor," IEEE Transactions on Computers, vol. 52, no. 4, pp. 449460, April, 2003.  
BibTex  x  
@article{ 10.1109/TC.2003.1190586, author = {Akashi Satoh and Kohji Takano}, title = {A Scalable DualField Elliptic Curve Cryptographic Processor}, journal ={IEEE Transactions on Computers}, volume = {52}, number = {4}, issn = {00189340}, year = {2003}, pages = {449460}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2003.1190586}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Scalable DualField Elliptic Curve Cryptographic Processor IS  4 SN  00189340 SP449 EP460 EPD  449460 A1  Akashi Satoh, A1  Kohji Takano, PY  2003 KW  Elliptic curve cryptography KW  public key cryptography KW  Montgomery multiplication KW  Galois field KW  highspeed hardware KW  ASIC implementation. VL  52 JA  IEEE Transactions on Computers ER   
Abstract—We propose an elliptic curve (EC) cryptographic processor architecture that can support Galois fields
[1] G.B. Agnew, R.C. Mullin, and S.A. Vanstone, An Implementation of Elliptic Curve Cryptosystems over$F_{2^{155}}$ IEEE J. Selected Areas in Comm., vol. 11, no. 5, pp. 804813, June 1993.
[2] S. Sutikno, A. Surya, and R. Effendi, “An Implementation of ElGamal Elliptic Curves Cryptosystems,” Proc. 1998 IEEE AsiaPacific Conf. Circuits and Systems (APCCAS '98), pp. 483486, Nov. 1998.
[3] S. Sutikno, R. Effendi, and A. Surya, “Design and Implementation of Arithmetic Processor$\big. F_2^{155}\bigr.$for Elliptic Curve Cryptosystems,” Proc. 1998 IEEE AsiaPacific Conf. Circuits and Systems (APCCAS '98), pp. 647650, Nov. 1998.
[4] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong, “FPGA Implementation of a Microcoded Elliptic Curve Cryptographic Processor,” Proc. 2000 IEEE Symp. Field Programmable Custom Computing Machines (FCCM '99), pp. 6876, Apr. 2000.
[5] M. Ernst, S. Klupsch, O. Hauck, and S.A. Huss, “Rapid Prototyping for Hardware Accelerated Elliptic Curve PublicKey Cryptosystems,” Proc. 12th Int'l Workshop Rapid System Prototyping (RSP 2001), pp. 2429, June 2001.
[6] L. Gao, S. Shrivastava, and G. Sobelman, “Elliptic Curve Scalar Multiplier Design Using FPGAs,” Proc. Cryptographic Hardware and Embedded Systems (CHES '99), pp. 257268, Aug. 1999.
[7] M.C. Rosner, “Elliptic Curve Cryptosystems on Reconfigurable Hardware,” master's thesis, Worcester Polytechnic Inst., May 1998, http://www.ece.wpi.edu/research/crypt/publications/ documentsms_mrosner.pdf.
[8] G. Orlando and C. Paar, “A HighPerformance Reconfigurable Elliptic Curve Processor for$\big. {\rm GF}(2^m)\bigr.$,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2000), pp. 4156, Aug. 2000.
[9] N.P. Smart, “The Hessian Form of an Elliptic Curve,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2001), pp. 118125, May 2001.
[10] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of Elliptic Curve Cryptographic Coprocessor over$\big. {\rm GF}(2^m)\bigr.$on an FPGA,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2000), pp. 2540, Aug. 2000.
[11] J. Goodman and A. Chandrakasan, “An Energy Efficient Reconfigurable PublicKey Cryptography Processor Architecture,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2000), pp. 175190, Aug. 2000.
[12] G. Orlando and C. Paar, “A Scalable$\big. GF(p)\bigr.$Elliptic Curve Processor Architecture for Programmable Hardware,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2001), pp. 349363, May 2001.
[13] S. Xu and L. Batina, “Efficient Implementation of Elliptic CurveCryptosystems on an ARM7 with Hardware Accelerator,” Proc. Information Security (ISC 2001), pp. 2663279, Oct. 2001.
[14] V.S. Miller, "Use of Elliptic Curves in Cryptography," Advances in Cryptology—Crypto 85, Lecture Notes in Computer Science, H.C. Williams, ed., Vol. 218, SpringerVerlag, New York, 1986, pp. 417426.
[15] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Computing, vol. 48, pp. 203209, 1987.
[16] J. Omura and J. Massey, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent Number 4,587,627, May 1986.
[17] “Digital Signature Standard (DSS),” FIPS PUB 1862, Nat'l Inst. of Standard Technology,http://csrc.nist.gov/publications/fips/fips1862 fips1862.pdf, Jan. 2000.
[18] P.L. Montgomery, “Modular Multiplication without Trial Division,” Math. Computing, vol. 44, no. 170, pp. 519521, Apr. 1985.
[19] C.K. Koc, T. Acar, and B. Kaliski, “Analyzing and Comparing Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3, pp. 2633, June 1996.
[20] Ç.K. Koç and T. Acar, “Montgomery Multplication in$\big. GF(2^k)\bigr.$,” Design, Codes, and Cryptography, vol. 14, no. 1, pp. 5769, 1998.
[21] H. Wu, “Montgomery Multiplier and Squarer in$\big. {\rm GF}(2^m)\bigr.$,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2000), pp. 264276, Aug. 2000.
[22] H. Wu, “Montgomery Multiplier and Squarer for a Class of Finite Fields,” IEEE Trans. Computers, vol. 51, no. 5, pp. 521529, May 2002.
[23] E. Savas, A.F. Tenca, and Ç.K. Koç, “A Scalable and Unified Multiplier Architecture for Finite Fields$\big. GF(p)\bigr.$and$\big. GF(2^m)\bigr.$,” Proc. Workshop Cryptographic Hardware and Embedded Systems (CHES 2000), Ç.K. Koçand C. Paar, eds., pp. 277292, 2000.
[24] J. Großschädl, “A BitSerial Unified Multiplier Architecture for Finite Fields$\big. {\rm GF}(p)\bigr.$and$\big. {\rm GF}(2^m)\bigr.$,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2001), pp. 202219, May 2001.
[25] A. Satoh, Y. Kobayashi, H. Niijima, N. Ooba, S. Munetoh, and S. Sone, “A HighSpeed Small RSA Encryption LSI with Low Power Dissipation,” Proc. Information Security Workshop '97 (ISW '97), pp. 174187, 1997.
[26] “IEEE P1363 Draft Version D13, Standard for PublicKey Cryptography, Draft Standard,” Nov. 1999.
[27] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, Fla., 1996, pp. 543590.