
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Arash ReyhaniMasoleh, M. Anwar Hasan, "Efficient Multiplication Beyond Optimal Normal Bases," IEEE Transactions on Computers, vol. 52, no. 4, pp. 428439, April, 2003.  
BibTex  x  
@article{ 10.1109/TC.2003.1190584, author = {Arash ReyhaniMasoleh and M. Anwar Hasan}, title = {Efficient Multiplication Beyond Optimal Normal Bases}, journal ={IEEE Transactions on Computers}, volume = {52}, number = {4}, issn = {00189340}, year = {2003}, pages = {428439}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2003.1190584}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Efficient Multiplication Beyond Optimal Normal Bases IS  4 SN  00189340 SP428 EP439 EPD  428439 A1  Arash ReyhaniMasoleh, A1  M. Anwar Hasan, PY  2003 KW  Finite fields KW  multiplication KW  normal bases KW  composite fields KW  optimal bases. VL  52 JA  IEEE Transactions on Computers ER   
Abstract—In cryptographic applications, the use of normal bases to represent elements of the finite field
[1] G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone, “An Implementation for a Fast PublicKey Cryptosystem,” J. Cryptology, vol. 3, pp. 6379, 1991.
[2] M. Ciet and J.J. Quisquater, F. Sica, A Secure Family of Composite Finite Fields Suitable for Fast Implementation of Elliptic Curve Cryptography Proc. Indocrypt 2001, pp. 108116, Dec. 2001.
[3] M. Elia and M. Leone, “On the Inherent Space Complexity of Fast Parallel Multipliers for$\big. GF(2^m)\bigr.$,” IEEE Trans. Computers, vol. 51, no. 3, pp. 346351, Mar. 2002.
[4] S.D. Galbraith and N. Smart, A Cryptographic Application of Weil Descent Proc. Seventh IMA Conf. Cryptography and Coding, pp. 191200, 1999.
[5] S. Gao and H.W. Lenstra Jr., Optimal Normal Bases Designs, Codes and Cryptography, vol. 2, pp. 315323, 1992.
[6] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified MasseyOmura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp. 12781280, Oct. 1993.
[7] Ç.K. Koç and B. Sunar, LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[8] M. Leone, “A New Low Complexity Parallel Multiplier for a Class of Finite Fields,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2001), pp. 160170, 2001.
[9] C.C. Lu, A Search of Minimal Key Functions for Normal Basis Multipliers IEEE Trans. Computers, vol. 46, no. 5, pp. 588592, May 1997.
[10] J.L. Massey and J.K. Omura, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent No. 4,587,627, 1986.
[11] M. Maurer, A. Menezes, and E. Teske, Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree Proc. Indocrypt 2001, pp. 195213, Dec. 2001.
[12] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.
[13] R.C. Mullin,I.M. Onyszchuk,S.A. Vanstone, and R.M. Wilson,"Optimal Normal Bases inGF(pn)," Discrete Applied Maths., pp. 142169, 1988/89.
[14] Nat'l Inst. of Standards and Tech nology, “Digital Signature Standard,” FIPS Publication 1862, Feb. 2000.
[15] S. Oh, C.H. Kim, J. Lim, and D.H. Cheon, Efficient Normal Basis Multipliers in Composite Fields IEEE Trans. Computers, vol. 49, no. 10, pp. 11331138, Oct. 2000.
[16] C. Paar, P. Fleishmann, and P. SoriaRodriguez, Fast Arithmetic for PublicKey Algorithms in Galois Fields with Composite Exponents IEEE Trans. Computers, vol. 48, no. 10, pp. 10251034, Oct. 1999.
[17] A. ReyhaniMasoleh, “Low Complexity and Fault Tolerant Arithmetic in Binary Extended Finite Fields,” PhD thesis, Dept. of Electrical and Computer Eng., Univ. of Waterloo, Canada, May 2001.
[18] A. ReyhaniMasoleh and M.A. Hasan, On Efficient Normal Basis Multiplication Proc. Indocrypt 2000, pp. 213224, Dec. 2000.
[19] A. ReyhaniMasoleh and M.A. Hasan, Fast Normal Basis Multiplication Using General Purpose Processors Proc. Selected Areas in Cryptography (SAC 2001), pp. 230244, Aug. 2001.
[20] A. ReyhaniMasoleh and M.A. Hasan, A New Construction of MasseyOmura Parallel Multiplier over$GF(2^m)$ IEEE Trans. Computers, vol. 51, no. 5, pp. 511520, May 2002.
[21] J.E. Seguin, “Low Complexity Normal Bases,” Discrete Applied Math., vol. 28, pp. 309312, 1990.
[22] N.P. Smart, How Secure Are Elliptic Curves over Composite Extension Fields? Proc. Eurocrypt 2001, pp. 3039, 2001.
[23] B. Sunar and Ç.K. Koç, An Efficient Optimal Normal Basis Type II Multiplier IEEE Trans. Computers, vol. 50, no. 1, pp. 8387, Jan. 2001.
[24] P.K.S. Wah and M.Z. Wang, “Realization and Application of the MasseyOmura Lock,” Proc. IEEE Int'l Zurich Seminar Digital Comm., pp. 175182, 1984.
[25] C.C. Wang,T.K. Truong,H.M. Shao,L.J. Deutsch,J.K. Omura, and I.S. Reed,"VLSI Architectures for Computing Multiplications and Inverses inGF(2m)," IEEE Trans. Computers, vol. 34, no. 8, pp. 709716, Aug. 1985.