
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Rajendra Katti, Joseph Brennan, "Low Complexity Multiplication in a Finite Field Using Ring Representation," IEEE Transactions on Computers, vol. 52, no. 4, pp. 418427, April, 2003.  
BibTex  x  
@article{ 10.1109/TC.2003.1190583, author = {Rajendra Katti and Joseph Brennan}, title = {Low Complexity Multiplication in a Finite Field Using Ring Representation}, journal ={IEEE Transactions on Computers}, volume = {52}, number = {4}, issn = {00189340}, year = {2003}, pages = {418427}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2003.1190583}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Low Complexity Multiplication in a Finite Field Using Ring Representation IS  4 SN  00189340 SP418 EP427 EPD  418427 A1  Rajendra Katti, A1  Joseph Brennan, PY  2003 KW  Finite field multiplication KW  ring representation KW  systolic arrays. VL  52 JA  IEEE Transactions on Computers ER   
Abstract—Elements of a finite field,
[1] D.R. Hankerson, D.G. Hoffman, D.A. Leonard, C.C. Lindner, K.T. Phelps, C.A. Rodger, and J.R. Wall, Coding Theory and Cryptography: The Essentials, second ed. Marcel Dekker, 2000.
[2] E. Trichina, M. Bucci, D. De Seta, and R. Luzzi, “Supplemental Cryptographic Hardware for Smart Cards,” IEEE Micro, pp. 2635, Nov./Dec. 2001.
[3] J. Dhem and N. Feyt, “Hardware and Software Symbiosis Helps Smart Card Evolution,” IEEE Micro, pp. 1425, Nov./Dec. 2001.
[4] M. Smith, “Smart Cards: Integrating for Portable Complexity,” Computer, pp. 110115, Aug. 1998.
[5] P.W. Dowd and J.T. McHenry, “Network Security,” Computer, pp. 2428, Sept. 1998.
[6] B. Schneier, Applied Cryptography. John Wiley&Sons, 1996.
[7] N. Koblitz, A Course in Number Theory and Cryptography, GTM. SpringerVerlag, 1987.
[8] Ç.K. Koç and B. Sunar, LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[9] A. Halbutogullari and C.K. Koc, Mastrovito Multiplier for General Irreducible Polynomials IEEE Trans. Computers, vol. 49, no. 5, pp. 503518, May 2000.
[10] M.A. Hasan and A.G. Wassal, “VLSI Algorithms, Architectures, and Implementation of a Versatile$\big. {\rm GF}(2^m)\bigr.$Processor,” IEEE Trans. Computers, vol. 49, no. 10, pp. 10641073, Oct. 2000.
[11] G. Drolet, “A New Representation of Elements of Finite Fields$\big. {\rm GF}(2^m)\bigr.$Yielding Small Complexity Arithmetic Circuits,” IEEE Trans. Computers, vol. 47, no. 9, pp. 938946, Sept. 1998.
[12] C. Paar, P. Fleishmann, and P. SoriaRodriguez, Fast Arithmetic for PublicKey Algorithms in Galois Fields with Composite Exponents IEEE Trans. Computers, vol. 48, no. 10, pp. 10251034, Oct. 1999.
[13] T.W. Hungerford, Algebra, eighth ed. SpringerVerlag, 1997.
[14] W.V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry. SpringerVerlag, 1997.
[15] C. Lee, E. Lu, and J. Lee, “BitParallel Systolic Multipliers for$\big. GF(2^m)\bigr.$Fields Defined by AllOne and Equally Spaced Polynomials,” IEEE Trans. Computers, vol. 50, no. 5, pp. 385393, May 2001.
[16] T. Zhang and K.K. Parhi, Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials IEEE Trans. Computers, vol. 50, no. 7, pp. 734748, July 2001.