
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Zeljko Zilic, Zvonko G. Vranesic, "A Deterministic Multivariate Interpolation Algorithm for Small Finite Fields," IEEE Transactions on Computers, vol. 51, no. 9, pp. 11001105, September, 2002.  
BibTex  x  
@article{ 10.1109/TC.2002.1032628, author = {Zeljko Zilic and Zvonko G. Vranesic}, title = {A Deterministic Multivariate Interpolation Algorithm for Small Finite Fields}, journal ={IEEE Transactions on Computers}, volume = {51}, number = {9}, issn = {00189340}, year = {2002}, pages = {11001105}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2002.1032628}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Deterministic Multivariate Interpolation Algorithm for Small Finite Fields IS  9 SN  00189340 SP1100 EP1105 EPD  11001105 A1  Zeljko Zilic, A1  Zvonko G. Vranesic, PY  2002 KW  Multivariate interpolation KW  finite fields KW  Vandermonde matrices KW  ReedMuller transform. VL  51 JA  IEEE Transactions on Computers ER   
Abstract—We present a new multivariate interpolation algorithm over arbitrary fields which is primarily suited for small finite fields. Given function values at arbitrary
[1] Z. Zilic and Z.G. Vranesic, “A Multiple Valued ReedMuller Transform for Incompletely Specified Functions,” IEEE Trans. Computers, vol. 44, no. 8, pp. 10121020, Aug. 1995.
[2] C. de Boor and A. Ron, “Computational Aspects of Polynomial Interpolation in Several Variables,” Math. Computation, vol. 58, pp. 705727, 1992.
[3] V. Guruswami and M. Sudan, “Improved Decoding of ReedSolomon and AlgebraicGeometric Codes,” Proc. Symp. Discrete Algorithms, pp. 108117, Nov. 1998.
[4] T. Damarla and M.G. Karpovsky, “ReedMuller Spectral Techniques for Fault Detection,” IEEE Trans. Computers, vol. 38, pp. 788797, 1989.
[5] R.E. Schapire and L.M. Sellie, “Learning Sparse Multivariate Polynomials over a Field with Queries and Counterexamples,” Proc. Symp. Computational Learning Theory (COLT '93), pp. 1726, May 1993.
[6] D.H. Green, “ReedMuller Expansions of Incompletely Specified Functions,” IEE Proc., Part E, vol. 134, no. 5, pp. 228236, Sept. 1987.
[7] A. Zakrevskij, “Minimum Polynomial Implementations of Systems of Incompletely Specified Boolean Functions,” Proc. Second Workshop Applications of the ReedMuller Expansions in Circuit Design, Aug. 1995.
[8] W.G. Schneeweiss, “On the Polynomial Form of Boolean Functions: Derivations and Applications,” IEEE Trans. Computers, vol. 47, no. 2, pp. 217221, Feb. 1998.
[9] K. Radecka and Z. Zilic, “Using Arithmetic Transform for Verification of Datapath Circuits via Error Modeling,” Proc. VLSI Test Symp. (VTS 2000), pp. 271277, 2000.
[10] Z. Zilic and K. Radecka, “Don't Care Minimization by Interpolation,” Proc. Int'l Workshop Logic Synthesis (IWLS '98), pp. 353356, May 1998.
[11] D. Bojanov, H.A. Hakopian, and A.A. Sahakian, Spline Functions and Multivariate Interpolations. Kluwer Academic, 1993.
[12] A. Dur and J. Grabmeier, “Applying Coding Theory to Sparse Interpolation,” SIAM J. Computing, vol. 22, no. 4, pp. 695703, Aug. 1993.
[13] D.Y. Grigoriev, M. Karpinski, and M.F. Singer, “Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields,” SIAM J. Computing, vol. 19, no. 6, pp. 10591063, Dec. 1990.
[14] M. BenOr and P. Tiwari, “A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation,” Proc. 20th Symp. Theory of Computing, pp. 301309, Apr. 1988.
[15] R.M. Roth and G.M. Benedek, “Interpolation and Approximation of Sparse Multivariate Polynomials over GF(2),” SIAM J. Computing, vol. 20, no. 2, pp. 291314, Apr. 1991.
[16] E. Kaltofen, W.S. Lee, and A.A. Lobo, “Early Termination in BenOr/Tiwari Sparse Interpolation and a Hybrid of Zippel's Algorithm,” Proc. Int'l Symp. Symbolic and Algebraic Computing, pp. 192201, 2000.
[17] K. Werther, “The Complexities of Sparse Polynomial Interpolation over Finite Fields,” Applicable Algebra in Eng., Comm., and Computing, vol. 5, pp. 192201, 1994.
[18] M. Clausen, A. Dress, J. Grebmeier, and M. Karpinski, “On ZeroTesting and Interpolation of kSparse Polynomials over Finite Fields,” Theoretical Computer Science, vol. 84, no. 2, pp. 151164, Jan. 1991.
[19] R. Zippel, “Interpolating Polynomials from Their Values,” J. Symbolic Computation, vol. 9, pp. 375403, Mar. 1990.
[20] T. Sauer, “Polynomial Interpolation of Minimal Degree,” Numerische Mathematik, vol. 78, pp. 5985, 1997.
[21] D. Knuth, The Art of Computer Programming, Vol. 2, AddisonWesley, Reading, Mass., 1998.
[22] J. von zur Gathen and G. Juergen, Modern Computer Algebra. Cambridge Univ. Press, 1999.
[23] Z. Zilic, “Towards Spectral Synthesis: Field Expansions for Partial Functions and Logic Modules for FPGAs,” PhD dissertation, Dept. of Electrical and Computer Eng., Univ. of Toronto, Jan. 1997.
[24] Z. Zilic and Z. Vranesic, “Parallel Sparse Finite Field Interpolation,” Proc. First IEEE Workshop Randomized Parallel Computing, pp. 916, Apr. 1996.