This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On the Inherent Space Complexity of Fast Parallel Multipliers for GF(2/supm/)
March 2002 (vol. 51 no. 3)
pp. 346-351

A lower bound to the number of AND gates used in parallel multipliers for $GF(2/supm/)$, under the condition that time complexity be minimum, is determined. In particular, the exact minimum number of AND gates for Primitive Normal Bases and Optimal Normal Bases of Type II multipliers is evaluated. This result indirectly suggests that space complexity is essentially a quadratic function of $m$ when time complexity is kept minimum.

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms. Reading, Mass.: Addison-Wesley, 1975.
[2] L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory. New York: Dover, 1958.
[3] A.J. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Boston: Kluwer Academic, 1993.
[4] R. Lidl and H. Niederreiter, Finite Fields. Reading, Mass.: Addison-Wesley, 1983.
[5] I.E. Shparlinski, Computational and Algorithmic Problems in Finite Fields. Boston: Kluwer Academic, 1992.
[6] S. Winograd, Arithmetic Complexity of Computation. Philadelphia: SIAM, 1980.
[7] G. Drolet, “A New Representation of Elements of Finite Fields$\big. {\rm GF}(2^m)\bigr.$Yielding Small Complexity Arithmetic Circuits,” IEEE Trans. Computers, vol. 47, no. 9, pp. 938-946, Sept. 1998.
[8] J. Hastad, “Tensor Rank Is NP-Complete,” J. Algorithms, vol. 11, no. 4, pp. 644-654, 1990.
[9] Ç.K. Koç and B. Sunar, Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998.
[10] B. Sunar and Ç.K. Koç, Mastrovito Multiplier for All Trinomials IEEE Trans. Computers, vol. 48, no. 5, pp. 522-527, May 1999.
[11] J. Omura and J. Massey, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent Number 4,587,627, May 1986.
[12] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962-971, Aug. 1992.
[13] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993.
[14] M.A. Hasan, Double-Basis Multiplicative Inversion over${\rm GF}(2^m)$ IEEE Trans.n Computers, vol. 47, no. 9, pp. 960-970, Sept. 1998.
[15] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of Finite Fields$GF(2^m)$,” Information and Computation, vol. 83, pp. 21-40, 1989.
[16] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields,” IEEE Trans. Computers, vol. 45, no. 7, pp. 846-861, July 1996.
[17] E.D. Mastrovito, “VLSI Architectures for Computation in Galois Fields,” PhD thesis, Dept. of Electrical Eng., Linköping Univ., Sweden, 1991.
[18] A. Reyhani-Masoleh and M.A. Hasan, “A Reduced Redundancy Massey-Omura Parallel Multiplier over$GF(2^m)$,” Proc. 20th Biennal Symp. Comm., May 2000.
[19] B. Sunar and Ç.K. Koç, An Efficient Optimal Normal Basis Type II Multiplier IEEE Trans. Computers, vol. 50, no. 1, pp. 83-87, Jan. 2001.
[20] M. Elia, M. Leone, and C. Visentin, “Low Complexity Bit-Parallel Multipliers for$GF(2^m)$with Generator Polynomial$x^m+x^k+1$,” Electronics Letters, vol. 35, no. 7, pp. 551-552, Apr. 1999.

Index Terms:
finite fields, parallel multiplier, optimal normal basis
Citation:
M. Elia, M. Leone, "On the Inherent Space Complexity of Fast Parallel Multipliers for GF(2/supm/)," IEEE Transactions on Computers, vol. 51, no. 3, pp. 346-351, March 2002, doi:10.1109/12.990131
Usage of this product signifies your acceptance of the Terms of Use.