The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (2002 vol.51)
pp: 346-351
ABSTRACT
<p>A lower bound to the number of AND gates used in parallel multipliers for <tmath>$GF(2/supm/)$</tmath>, under the condition that time complexity be minimum, is determined. In particular, the exact minimum number of AND gates for Primitive Normal Bases and Optimal Normal Bases of Type II multipliers is evaluated. This result indirectly suggests that space complexity is essentially a quadratic function of <tmath>$m$</tmath> when time complexity is kept minimum.</p>
INDEX TERMS
finite fields, parallel multiplier, optimal normal basis
CITATION
M. Elia, M. Leone, "On the Inherent Space Complexity of Fast Parallel Multipliers for GF(2/supm/)", IEEE Transactions on Computers, vol.51, no. 3, pp. 346-351, March 2002, doi:10.1109/12.990131
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool