This Article 
 Bibliographic References 
 Add to: 
A Note on Complexity of OBDD Composition and Efficiency of Partitioned-OBDDs over OBDDs
November 2001 (vol. 50 no. 11)
pp. 1289-1290

Abstract—We discuss an open problem with constructing an OBDD using composition and prove that the worst case complexity of the construction is truly cubic. Using this insight, we show compactness of partitioned-OBDDs over monolithic OBDDs.

[1] R.E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," IEEE Trans. Computers, Vol. C-35, No. 8, Aug. 1986, pp. 667-690.
[2] J. Jain, J. Bitner, D.S. Fussell, and J.A. Abraham, “Functional Partitioning for Verification and Related Problems,” Proc. Brown/MIT VLSI Conf., pp. 210-226, Mar. 1992.
[3] J. Jain, A. Narayan, C. Coelho, S. Khatri, A. Sangiovanni-Vincentelli, R. Brayton, and M. Fujita, “Decomposition Techniques for Efficient ROBDD Construction,” Proc. Formal Methods in CAD '96, pp. 419-434. Nov. 1996.
[4] A. Narayan, J. Jain, M. Fujita, and A.L. Sangiovanni-Vincentelli, “Partitioned-ROBDDs—A Compact, Canonical and Efficiently Manipulable Representation for Boolean Functions,” Proc. Int'l Conf. Computer-Aided Design (ICCAD), pp. 547-554, Nov. 1996.
[5] D. Sieling and I. Wegener, “NC-Algorithms for Operations on Binary Decision Diagrams,” Parallel Processing Letters, vol. 3, pp. 3-12, 1993.

Index Terms:
Partitioned-OBDDs, OBDDs, composition.
Jawahar Jain, Ingo Wegener, Masahiro Fujita, "A Note on Complexity of OBDD Composition and Efficiency of Partitioned-OBDDs over OBDDs," IEEE Transactions on Computers, vol. 50, no. 11, pp. 1289-1290, Nov. 2001, doi:10.1109/12.966501
Usage of this product signifies your acceptance of the Terms of Use.