
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
ChiouYng Lee, ErlHuei Lu, JauYien Lee, "BitParallel Systolic Multipliers for GF(2m) Fields Defined by AllOne and Equally Spaced Polynomials," IEEE Transactions on Computers, vol. 50, no. 5, pp. 385393, May, 2001.  
BibTex  x  
@article{ 10.1109/12.926154, author = {ChiouYng Lee and ErlHuei Lu and JauYien Lee}, title = {BitParallel Systolic Multipliers for GF(2m) Fields Defined by AllOne and Equally Spaced Polynomials}, journal ={IEEE Transactions on Computers}, volume = {50}, number = {5}, issn = {00189340}, year = {2001}, pages = {385393}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.926154}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  BitParallel Systolic Multipliers for GF(2m) Fields Defined by AllOne and Equally Spaced Polynomials IS  5 SN  00189340 SP385 EP393 EPD  385393 A1  ChiouYng Lee, A1  ErlHuei Lu, A1  JauYien Lee, PY  2001 KW  Bitparallel systolic multiplier KW  finite field KW  AOP KW  ESP. VL  50 JA  IEEE Transactions on Computers ER   
Abstract—Two operations, the cyclic shifting and the inner product, are defined by the properties of irreducible all one polynomials. An effective algorithm is proposed for computing multiplications over a class of fields
[1] E.R. Berlekamp, Algebraic Coding Theory. New York: McGrawHill, 1968.
[2] D.E.R. Denning, Cryptography and Data Security. AddisonWesley, 1983.
[3] A. Odlyzko, "Discrete Logarithms in Finite Fields and Their Cryptographic Significance," Lecture Notes in Computer Science 209, pp. 224316.Berlin: SpringerVerlag, 1984.
[4] W. Diffe and M. Hellman, “New Directions in Cryptography,” IEEE Trans. Information Theory, vol. 22, pp. 644654, 1976.
[5] C.S. Yeh, S. Reed, and T.K. Truong, “Systolic Multipliers for Finite Fields$GF(2^m)$,” IEEE Trans. Computers, vol. 33, no. 4, pp. 357360, Apr. 1984.
[6] S.W. Wei, “A Systolic PowerSum Circuit for$GF(2^m)$,” IEEE Trans. Computers, vol. 43, no. 2, pp. 226229, Feb. 1994.
[7] C.L. Wang, “BitLevel Systolic Array for Fast Exponentiation in$GF(2^m)$,” IEEE Trans. Computers, vol. 43, no. 7, pp. 838841, July 1994.
[8] J.J. Wonziak, “Systolic Dual Basis Serial Multiplier,” IEE Proc. Computers and Digital Technology, vol. 145, no. 3, pp. 237241, May 1998.
[9] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of Finite Fields$GF(2^m)$,” Information and Computation, vol. 83, pp. 2140, 1989.
[10] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962971, Aug. 1992.
[11] Ç.K. Koç and B. Sunar, LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[12] H. Wu and M.A. Hasan, "Low Complexity Bitparallel Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 8, pp. 883887, Aug. 1998.
[13] H. Wu, M.A. Hasan, and I.F. Blake, New LowComplexity BitParallel Finite Field Multipliers Using Weakly Dual Bases IEEE Trans. Computers, vol. 47, no. 11, pp. 12231233, Nov. 1998.
[14] G. Drolet, “A New Representation of Elements of Finite Fields$\big. {\rm GF}(2^m)\bigr.$Yielding Small Complexity Arithmetic Circuits,” IEEE Trans. Computers, vol. 47, no. 9, pp. 938946, Sept. 1998.