This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Efficient Normal Basis Multipliers in Composite Fields
October 2000 (vol. 49 no. 10)
pp. 1133-1138

Abstract—It is well-known that a class of finite fields $GF(2^n)$ using an optimal normal basis is most suitable for a hardware implementation of arithmetic in finite fields. In this paper, we introduce composite fields of some hardware-applicable properties resulting from the normal basis representation and the optimal condition. We also present a hardware architecture of the proposed composite fields including a bit-parallel multiplier.

[1] G. Harper, A. Menezes, and S. Vanstone, “Public-Key Cryptosystems with Very Small Key Length,” Proc. Eurocrypt 92, pp. 163-173, 1992.
[2] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962-971, Aug. 1992.
[3] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993.
[4] Ç.K. Koç and B. Sunar, Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998.
[5] R. Lidl and H. Niederreiter,An Introduction to Finite Fields and Their Applications.Cambridge: Cambridge Univ. Press, 1986.
[6] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.
[7] R.C. Mullin,I.M. Onyszchuk,S.A. Vanstone, and R.M. Wilson,"Optimal Normal Bases inGF(pn)," Discrete Applied Maths., pp. 142-169, 1988/89.
[8] J.K. Omura and J.L. Massey, “Computational Method and Apparatus for Finite Field Arithmetic” U.S. patent 4,587,627. year?
[9] C. Paar, P. Fleischmann, and P. Roelse, “Efficient Multiplier Architectures for Galois Fields,” IEEE Trans. Computers, vol. 47, no. 2, pp. 162-170, Feb. 1998.
[10] P.K.S. Wah and M.Z. Wang, “Realization and Application of the Massey-Omura Lock,” Proc. Int'l Zurich Seminar, 1984.

Index Terms:
Finite field, composite field, optimal normal basis, bit-parallel multiplier.
Citation:
Sangho Oh, Chang Han Kim, Jongin Lim, Dong Hyeon Cheon, "Efficient Normal Basis Multipliers in Composite Fields," IEEE Transactions on Computers, vol. 49, no. 10, pp. 1133-1138, Oct. 2000, doi:10.1109/12.888054
Usage of this product signifies your acceptance of the Terms of Use.