
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Marc Joye, SungMing Yen, "Optimal LefttoRight Binary SignedDigit Recoding," IEEE Transactions on Computers, vol. 49, no. 7, pp. 740748, July, 2000.  
BibTex  x  
@article{ 10.1109/12.863044, author = {Marc Joye and SungMing Yen}, title = {Optimal LefttoRight Binary SignedDigit Recoding}, journal ={IEEE Transactions on Computers}, volume = {49}, number = {7}, issn = {00189340}, year = {2000}, pages = {740748}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.863044}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Optimal LefttoRight Binary SignedDigit Recoding IS  7 SN  00189340 SP740 EP748 EPD  740748 A1  Marc Joye, A1  SungMing Yen, PY  2000 KW  Computer arithmetic KW  converter KW  signeddigit representation KW  redundant number representation KW  SD2 lefttoright recoding KW  canonical/minimumweight/nonadjacent form KW  exponentiation KW  elliptic curves KW  smartcards KW  cryptography. VL  49 JA  IEEE Transactions on Computers ER   
Abstract—This paper describes new methods for producing optimal binary signeddigit representations. This can be useful in the fast computation of exponentiations. Contrary to existing algorithms, the digits are scanned from left to right (i.e., from the most significant position to the least significant position). This may lead to better performances in both hardware and software.
[1] A. Avizienis, “SignedDigit Number Representations for Fast Parallel Arithmetic,” IRE Trans. Electronic Computers, vol. 10, pp. 389400, 1961.
[2] I. Koren, Computer Arithmetic Algorithms.Englewood Cliffs, N.J.: Prentice Hall, 1993.
[3] N. Takagi,H. Yasuura,, and S. Yajima,“Highspeed VLSI multiplication algorithm with a redundant binary addition tree,” IEEE Trans. Computers, vol. 34, no. 9, pp. 789796, Sept. 1985.
[4] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi, “Design of High Speed MOS Multiplier and Divider Using Redundant Binary Representation,” Proc. Eighth Symp. Computer Arithmetic, pp. 8086, 1987.
[5] Y. Harata, Y. Nakamura, H. Nagese, M. Takigawa, and N. Takagi, "A HighSpeed Multiplier Using a Redundant Binary Adder Tree," IEEE J. SolidState Circuits, vol. 22, pp. 2834, Feb. 1987.
[6] A. Vandemeulebroecke,E. Vanzieleghem,T. Denayer, and P.G.A. Jespers,"A New CarryFree Diversion Algorithm and Its Application to a SingleChip 1024b RSA Processor," IEEE J. Solid State Circuits, vol. 25, no. 3, pp. 748765, 1990.
[7] K. Hwang,Computer Arithmetic, Principles, Architecture, and Design.New York: John Wiley&Sons, 1979.
[8] S.M. Yen, C.S. Laih, C.H. Chen, and J.Y. Lee, “An Efficient RedundantBinary Number to Binary Number Converter,” IEEE J. SolidState Circuits, vol. 27, no. 1, pp. 109112, 1992.
[9] R.L. Rivest,A. Shamir, and L.A. Adleman,"A Method for Obtaining Digital Signatures and Public Key Cryptosystems," Comm. ACM, vol. 21, pp. 120126, 1978.
[10] Ç.K. Koç, “HighSpeed RSA Implementations,” Technical Report TR 201, RSA Laboratories, Nov. 1994.
[11] D. Knuth, The Art of Computer Programming, Vol. 2, AddisonWesley, Reading, Mass., 1998.
[12] P. Downey, B. Leong, and R. Sethi, “Computing Sequences with Addition Chains,” SIAM J. Computing, vol. 10, pp. 638646, 1981.
[13] J. Bos and M. Coster, "Addition Chain Heuristics," Proc. Crypto '89, Lecture Notes in Computer Science, vol. 435, pp. 400407. SpringerVerlag, 1990.
[14] T. ElGamal, A PublicKey Cryptosystem and a Signature Scheme Based on Discrete Logarithms IEEE Trans. Information Theory, vol. 31, no. 4, pp. 469472, 1985.
[15] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, Fla., 1996, pp. 543590.
[16] E.F. Brickell, D.M. Gordon, K.S. McCurley, and D.R. Wilson, “Fast Exponentiation with Precomputation: Algorithms and Lower Bounds,” preprint, Mar. 1995. An earlier version appeared in Proc. EUROCRYPT '92.
[17] F. Morain and J. Olivos, “Speeding Up the Computations on an Elliptic curve Using AdditionSubtraction Chains,” Theoretical Informatics and Applications, vol. 24, pp. 531543, 1990.
[18] A.D. Booth, “A Signed Binary Multiplication Technique,” Quarterly J. Mechanics and Applied Math., vol. 4, pp. 236240, 1951.
[19] G.W. Reitwiesner, “Binary Arithmetic,” Advances in Computers, vol. 1, pp. 231308, 1960.
[20] J. Jedwab and C.J. Mitchell, Minimum Weight Modified SignedDigit Representations and Fast Exponentiation Electronics Letters, vol. 25, no. 17, pp. 11711172, 1989.
[21] H. Cohen, A Course in Computational Algebraic Number Theory. SpringerVerlag, 1993.
[22] Ö. Egecioglu and Ç. K. Koç, "Exponentiation Using Canonical Recoding," Theoretical Computer Science, vol. 129, no. 2, pp. 407417, 1994.
[23] B.S. Kaliski Jr., “The Montgomery Inverse and Its Applications,” IEEE Trans. Computers, vol. 44, no. 8, pp. 1,0641,065, Aug. 1995.
[24] S. Arno and F.S. Wheeler, Signed Digit Representations of Minimal Hamming Weight IEEE Trans. Computers, vol. 42, no. 8, pp. 10071010, Aug. 1993.
[25] D.M. Gordon, “A Survey of Fast Exponentiation Methods” J. Algorithms, vol. 27, no. 1, pp. 129146, Apr. 1998.
[26] W.E. Clark and J.J. Liang, On Arithmetic Weight for a General Radix Representation of Integers IEEE Trans. Information Theory, vol. 19, no. 6, pp. 823826, 1973.
[27] H. Wu and M.A. Hasan, Efficient Exponentiation of a Primitive Root in$GF(2^m)$ IEEE Trans. Computers, vol. 46, no. 2, pp. 162172, Feb. 1997.
[28] J. Omura and J. Massey, “Computational Method and Apparatus for Finite Field Arithmetic,” U.S. Patent #4,587,627, 1986.
[29] Ç.K. Koç, “Parallel Canonical Recoding,” Electronics Letters, vol. 32, pp. 2,0632,065, 1996.
[30] Computer Arithmetic, E.E. Swartzlander Jr., ed., vols. 1 and 2. IEEE CS Press, 1990.