
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Michael J. Schulte, Earl E. Swartzlander, "A Family of VariablePrecision Interval Arithmetic Processors," IEEE Transactions on Computers, vol. 49, no. 5, pp. 387397, May, 2000.  
BibTex  x  
@article{ 10.1109/12.859535, author = {Michael J. Schulte and Earl E. Swartzlander}, title = {A Family of VariablePrecision Interval Arithmetic Processors}, journal ={IEEE Transactions on Computers}, volume = {49}, number = {5}, issn = {00189340}, year = {2000}, pages = {387397}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.859535}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Family of VariablePrecision Interval Arithmetic Processors IS  5 SN  00189340 SP387 EP397 EPD  387397 A1  Michael J. Schulte, A1  Earl E. Swartzlander, PY  2000 KW  Processors KW  hardware designs KW  variableprecision arithmetic KW  interval arithmetic KW  computer arithmetic KW  roundoff error KW  accuracy. VL  49 JA  IEEE Transactions on Computers ER   
Abstract—Traditional computer systems often suffer from roundoff error and catastrophic cancellation in floating point computations. These systems produce apparently high precision results with little or no indication of the accuracy. This paper presents hardware designs, arithmetic algorithms, and software support for a family of variableprecision, interval arithmetic processors. These processors give the programmer the ability to detect and, if desired, to correct implicit errors in finite precision numerical computations. They also provide the ability to solve problems that cannot be solved efficiently using traditional floating point computations. Execution time estimates indicate that these processors are two to three orders of magnitude faster than software packages that provide similar functionality.
[1] A. Yu, “The Future of Microprocessors,” IEEE Micro, vol. 16, no. 6, pp. 4653, Dec. 1996.
[2] M. Tremblay and J.M. O'Connor, “UltraSparc I: A FourIssue Processor Supporting Multimedia,” IEEE Micro, vol. 16, no. 2, pp. 4250, Apr. 1996.
[3] A. Peleg and U. Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, vol. 16, no. 4, pp. 4250, Aug. 1996.
[4] G. Bohlender, “What Do We Need Beyond IEEE Arithmetic?” Computer Arithmetic and SelfValidating Numerical Methods, C. Ullrich, ed., pp. 132, Boston: Academic Press, 1990.
[5] D. Goldberg, “What Every Computer Scientist Should Know About FloatingPoint Arithmetic,” Computing Surveys, vol. 23, no. 1, pp. 548, 1991.
[6] R.E. Moore, Interval Analysis. Englewood Cliffs, N.J.: Prentice Hall, 1966.
[7] G. Alefeld and J. Herzberger, Introduction to Interval Computations. New York: Academic Press, 1983.
[8] W. Kramer, “A Priori Worst Case Error Bounds for FloatingPoint Computations,” IEEE Trans. Computers, vol. 47, no. 7, pp. 750756, July 1997.
[9] G.F. Corliss, “Industrial Applications of Interval Techniques,” Computer Arithmetic and SelfValidating Numerical Methods, C. Ullrich, ed., pp. 91113, Boston: Academic Press, 1990.
[10] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, C++ Toolbox for Verified Computing. Berlin: SpringerVerlag, 1995.
[11] R.E. Moore, “Computing to Arbitrary Accuracy,” Computational and Applied Mathematics, I: Algorithms and Theory, C. Brezinski and U. Kulisch, eds., pp. 327336, Amsterdam: NorthHolland, 1992.
[12] R.B. Kearfott and V. Kreinovich, “Applications of Interval Computations: An Introduction,” Applications of Interval Computations, R.B. Kearfott and V. Kreinovich, eds., pp. 122, Boston: Kluwer Academic, 1996.
[13] M.J. Schulte and E.E. SwartzlanderJr., “Software and Hardware Techniques for Accurate, SelfValidating Arithmetic,” Applications of Interval Computations, R.B. Kearfott and V. Kreinovich, eds., pp. 381404, Boston: Kluwer Academic, 1996.
[14] J.S. Ely, “The VPI Software Package for Variable Precision Interval Arithmetic,” Interval Computations, vol. 2, no. 2, pp. 135153, 1993.
[15] O. Knuppel, “PROFIL/BIAS—A Fast Interval Library,” Computing, vol. 53, nos. 34, pp. 277288, 1994.
[16] M.J. Schulte, A. Akkas, V. Zelov, and J.C. Burley, “The IntervalEnhanced GNU Fortran Compiler,” Reliable Computing, vol. 5, no. 3, pp. 311322, Aug. 1999.
[17] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and C. Ullrich, PASCALXSC: Language Reference with Examples. Berlin: SpringerVerlag, 1991.
[18] O. Aberth, “Precise Scientific Computation with a Microprocessor,” IEEE Trans. Computers, vol. 33, no. 8, pp. 685690, Aug. 1984.
[19] E. Kinoshita and L. KiJa, “A Residue Arithmetic Extension for Reliable Scientific Computing,” IEEE Trans. Computers, vol. 46, no. 2, pp. 129138, Feb. 1997.
[20] A. Knofel, “Fast Hardware Units for the Computation of Accurate Dot Products,” Proc. 10th Symp. Computer Arithmetic, pp. 7075, 1991.
[21] C. Baumhof, “A New VLSI Vector Arithmetic Coprocessor for the PC,” Proc. 12th Symp. Computer Arithmetic, pp. 210215, 1991.
[22] P. Korenerup and D.W. Matula, “Finite Precision Rational Arithmetic: An Arithmetic Unit,” IEEE Trans. Computers, vol. 32, no. 7, pp. 378388, July 1983.
[23] T.M. Carter, “Cascade: Hardware for High/Variable Precision Arithmetic,” Proc. Ninth Symp. Computer Arithmetic, pp. 184191, 1989.
[24] M.S. Cohen, T.E. Hull, and V.C. Hamacher, “CADAC: A ControlledPrecision Decimal Arithmetic Unit,” IEEE Trans. Computers, vol. 32, no. 4, pp. 370377, Apr. 1983.
[25] J.E Stine and M.J. Schulte, “A Combined Interval and FloatingPoint Divider,” Conf. Record 32nd Asilomar Conf. Signals, Systems, and Computers, pp. 218222, 1998.
[26] J.E Stine and M.J Schulte, “A Combined Interval and FloatingPoint Multiplier,” Proc. Eighth Great Lakes Symp. VLSI, pp. 208215, 1998.
[27] M.J. Schulte and E.E. SwartzlanderJr., “A Software Interface and Hardware Design for VariablePrecision Interval Arithmetic,” Reliable Computing, vol. 1, no. 3, pp. 325342, 1995.
[28] M.J. Schulte and E.E. SwartzlanderJr., “A Hardware Design and Arithmetic Algorithms for a VariablePrecision, Interval Arithmetic Coprocessor,” Proc. 12th Symp. Computer Arithmetic, pp. 163171, 1995.
[29] M.J. Schulte, “A VariablePrecision, Interval Arithmetic Processor,” doctoral dissertation, Dept. of Electrical and Computer Eng., Univ. of Texas at Austin, 1996.
[30] ANSI/IEEE Std. 7541985, Binary FloatingPoint Arithmetic, IEEE Press, Piscataway, N.J., 1985 (also called ISO/IEC 559).
[31] LSI Logic 1. 0 Micron CellBased Products Databook, LSI Logic Corporation, Milpitas, Calif., 1991.
[32] K.C. Bickerstaff, M.J. Schulte, and E.E. SwartzlanderJr., “Reduced Area Multipliers,” Proc. 1993 Int'l Conf. Application Specific Array Processors, pp. 478489, 1993.
[33] K.C. Bickerstaff, M.J. Schulte, and E.E. SwartzlanderJr., “Parallel Reduced Area Multipliers,” J. VLSI Signal Processing, pp. 181191, Apr. 1995.
[34] D.W. Matula, “Design of a Highly Parallel IEEE Standard Floating Point Unit: The Cyrix 83D87 Coprocessor,” Proc. Second IEEE Symp. Parallel and Distributed Processing, p. 334, 1990.
[35] E. Hansen, Global Optimization Using Interval Analysis. New York: Marcel Dekker, 1992.