
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Christof Paar, Peter Fleischmann, Pedro SoriaRodriguez, "Fast Arithmetic for PublicKey Algorithms in Galois Fields with Composite Exponents," IEEE Transactions on Computers, vol. 48, no. 10, pp. 10251034, October, 1999.  
BibTex  x  
@article{ 10.1109/12.805153, author = {Christof Paar and Peter Fleischmann and Pedro SoriaRodriguez}, title = {Fast Arithmetic for PublicKey Algorithms in Galois Fields with Composite Exponents}, journal ={IEEE Transactions on Computers}, volume = {48}, number = {10}, issn = {00189340}, year = {1999}, pages = {10251034}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.805153}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Fast Arithmetic for PublicKey Algorithms in Galois Fields with Composite Exponents IS  10 SN  00189340 SP1025 EP1034 EPD  10251034 A1  Christof Paar, A1  Peter Fleischmann, A1  Pedro SoriaRodriguez, PY  1999 KW  Galois field KW  multiplication KW  squaring KW  VLSI KW  implementation KW  cryptography KW  elliptic curves. VL  48 JA  IEEE Transactions on Computers ER   
Abstract—This contribution describes a new class of arithmetic architectures for Galois fields
[1] C. Paar and P. SoriaRodriguez, “Fast Arithmetic Architectures for PublicKey Algorithms over Galois Fields$GF((2^n)^m)$,” Advances in Cryptography—EUROCRYPT '97, W. Fumy, ed., pp. 363378, 1997.
[2] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, Fla., 1996, pp. 543590.
[3] V.S. Miller, "Use of Elliptic Curves in Cryptography," Advances in Cryptology—Crypto 85, Lecture Notes in Computer Science, H.C. Williams, ed., Vol. 218, SpringerVerlag, New York, 1986, pp. 417426.
[4] N. Koblitz, "Hyperelliptic Cryptosystems," J. Cryptology, vol. 1, no. 3, pp. 129150, 1989.
[5] E. Mastrovito, “VLSI Architectures for Computation in Galois Fields,” PhD thesis, Dept. of Electrical Eng., Linköping Univ., Sweden, 1991.
[6] A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen,” Computing, vol. 7, pp. 281292, 1971.
[7] D. Cantor and E. Kaltofen, “On Fast Multiplication of Polynomials over Arbitrary Algebras,” Acta Informatica, vol. 28, pp. 693701, 1991.
[8] G. Harper, A. Menezes, and S. Vanstone, “PublicKey Cryptosystems with Very Small Key Lengths,” Advances in Cryptology—EUROCRYPT '92, R. Rueppel, ed., pp. 163173, May 1992.
[9] E. De Win, A. Bosselaers, S. Vanderberghe, P. De Gersem, and J. Vandewalle, “A Fast Software Implementation for Arithmetic Operations in$\big. {\rm GF(2^n)}\bigr.$,” Advances in Cryptology, Proc. Asiacrypt '96, K. Kim and T. Matsumoto, eds., pp. 6576, 1996.
[10] J. Guajardo and C. Paar, “Efficient Algorithms for Elliptic Curve Cryptosystems,” Advances in Cryptology—CRYPTO 97, B.S. Kaliski, ed., pp. 342356, 1997.
[11] E.D. Mastrovito,"VLSI Design for Multiplication over Finite Fields," LNCS357, Proc. AAECC6, pp. 297309,Rome, July 1988, SpringerVerlag.
[12] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962971, Aug. 1992.
[13] S.T.J. Fenn, M. Benaissa, and D. Taylor, $GF(2^m)$Multiplication and Division over the Dual Basis IEEE Trans. Computers, vol. 45, no. 3, pp. 319327, Mar. 1996.
[14] GL. Feng,"A VLSI Architecture for Fast Iinversion inGF(2m)," IEEE Trans. Computers, vol. 38, no. 10, pp. 1,3831,386, Oct. 1989.
[15] M. Morii and M. Kasahara, “Efficient Construction of Gate Circuit for Computing Multiplicative Inverses over$GF(2^m)$,” Trans. IEICE, vol. E72, pp. 3742, Jan. 1989.
[16] S.T.J. Fenn, M. Benaissa, and D. Taylor, Finite Field Inversion over the Dual Basis IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 134136, Mar. 1996.
[17] W. Geiselmann and D. Gollmann, “VLSI Design for Exponentiation in$\big. {\rm GF}(2^m)\bigr.$,” Proc. AUSCRYPT '90, pp. 398405, 1990.
[18] C.C. Wang and D. Pei, "A VLSI Design for Computing Exponentiation in GF(2m) and Its Application to Generate Pseudorandom Number Sequences," IEEE Trans. Computers, vol. 39, no. 2, pp. 258262, Feb. 1990.
[19] M. Hasan and V. Bhargava, “Low Complexity Architecure for Exponentiation in$GF(2^m)$,” Electronics Letters, vol. 28, pp. 1,9841,986, Oct. 1992.
[20] L. Song and K.K. Parhi, “Low Energy DigitSerial/Parallel Finite Field Multipliers,” J. VLSI Signal Processing, vol. 19, pp. 149166, June 1998.
[21] I.S. Hsu,T.K. Truong,L.J. Deutsch, and I.S. Reed,"A Comparison of VLSI Architectures of Finite Field Multipliers Using Dual, Normal or Standard Bases," IEEE Trans. Computers, vol. 37, no. 6, pp. 735737, June 1988.
[22] Y. Jeong and W. Burleson, “Choosing VLSI Algorithms for Finite Field Arithmetic,” Proc. IEEE Symp. Circuits and Systems, ISCAS 92, pp. 799802, 1992.
[23] C. Paar and N. Lange, “A Comparative VLSI Synthesis of Finite Field Multipliers,” Proc. Third Int'l Symp. Comm. Theory and Its Applications, Lake District, U.K., July 1995.
[24] G. Agnew, R. Mullin, I. Onyschuk, and S. Vanstone, “An Implementation for a Fast PublicKey Cryptosystem,” J. Cryptography, vol. 3, 1991.
[25] W. Gollmann, “Algorithmenentwurf in der Kryptographie,” Habilitation, Fakultät für Informatik, Universität Karlsruhe, Germany, Aug. 1990.
[26] K. Yiu and K. Peterson, “A SingleChip VLSI Implemenation of the Discrete Exponential PublicKey Distribution System,” IBM Systems J., vol. 15, no. 1, pp. 102116, 1982.
[27] G.B. Agnew, R.C. Mullin, and S.A. Vanstone, An Implementation of Elliptic Curve Cryptosystems over$F_{2^{155}}$ IEEE J. Selected Areas in Comm., vol. 11, no. 5, pp. 804813, June 1993.
[28] S. Lin and D. J. Costello,Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: PrenticeHall, 1983.
[29] T. Beth and D. Gollmann, “Algorithm Engineering for Public Key Algorithms,” IEEE J. Selected Areas in Comm., vol. 7, no. 4, pp. 458466, 1989.
[30] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, AddisonWesley, 1994.
[31] R. Lidl and H. Niederreiter, Finite Fields. Reading, Mass.: AddisonWesley, 1983.
[32] G. Seroussi, “Table of LowWeight Binary Irreducible Polynomials,” Technical Report HPL98135, HP Labs, 1998.
[33] V. Afanasyev, “On the Complexity of Finite Field Arithmetic,” Proc. Fifth Joint SovietSwedish Int'l Workshop Information Theory, pp. 912, Moscow, Jan. 1991.
[34] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields,” IEEE Trans. Computers, vol. 45, no. 7, pp. 846861, July 1996.
[35] W. Geiselmann, “Algebraische Algorithmenentwicklung am Beispiel der Arithmetik in Endlichen Körpern,” PhD thesis, Universität Karlsruhe, Fakultät für Informatik, Institut für Algorithmen und Kognitive Systeme, Karlsruhe, Germany, 1993.
[36] R.C. Mullin,I.M. Onyszchuk,S.A. Vanstone, and R.M. Wilson,"Optimal Normal Bases inGF(pn)," Discrete Applied Maths., pp. 142169, 1988/89.
[37] D. Knuth, The Art of Computer Programming, Vol. 2, AddisonWesley, Reading, Mass., 1998.
[38] A. Menezes, Elliptic Curve Public Key Cryptosystems. Kluwer Academic, 1993.
[39] M. Lehky, M. Nappi, and P. SoriaRodriguez, “Coprocessor Board for Cryptographic Applications,” major qualifying project (senior thesis), Electrical and Computer Eng. Dept., Worcester Polytechnic Inst., Worcester, Mass., May 1996.
[40] M. Rosner, “Elliptic Curve Cryptosystems on Reconfigurable Hardware,” master's thesis, Electrical and Computer Eng. Dept., Worcester Polytechnic Inst., Worcester, Mass., May 1998.
[41] L. Adleman and J. DeMarrais, “A Subexponential Algorithm for Discrete Logarithms over All Finite Fields,” Advances in Cryptography—CRYPTO '93, D. Stinson, ed., pp. 147158, 1993.