
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Savio S.H. Tse, Francis C.M. Lau, "On the Space Requirement of Interval Routing," IEEE Transactions on Computers, vol. 48, no. 7, pp. 752757, July, 1999.  
BibTex  x  
@article{ 10.1109/12.780884, author = {Savio S.H. Tse and Francis C.M. Lau}, title = {On the Space Requirement of Interval Routing}, journal ={IEEE Transactions on Computers}, volume = {48}, number = {7}, issn = {00189340}, year = {1999}, pages = {752757}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.780884}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  On the Space Requirement of Interval Routing IS  7 SN  00189340 SP752 EP757 EPD  752757 A1  Savio S.H. Tse, A1  Francis C.M. Lau, PY  1999 KW  Compact routing KW  computational complexity KW  computer networks KW  distributed systems KW  graph theory KW  interval routing KW  optimization KW  shortest paths. VL  48 JA  IEEE Transactions on Computers ER   
Abstract—Interval routing is a spaceefficient method for pointtopoint networks. It is based on labeling the edges of a network with intervals of vertex numbers (called interval labels). An
[1] H.L. Bodlaender, R.B. Tan, D.M. Thilikos, and J. van Leeuwen, “On Interval Routing Schemes and Treewidth,” Proc. 21st GraphTheoretic Concepts in Computer Science (WG '95), pp. 181186, 1995.
[2] P. Fraigniaud and C. Gavoille, “Interval Routing Schemes,” Algorithmica, vol. 21, pp. 155182, 1998.
[3] C. Gavoille and E. Guévremont, “Worst Case Bounds for Shortest Path Interval Routing,” J. Algorithms, vol. 27, pp. 125, 1998.
[4] C. Gavoille, “On the Dilation of Interval Routing,” Proc. 22nd Int'l Symp. Mathematical Foundations of Computer Science (MFCS '97), pp. 259268, 1997.
[5] E. Kranakis and D. Krizanc, “Lower Bounds for Compact Routing,” Proc. 13th Ann. Symp. Theoretical Aspects of Computer Science (STACS '96), pp. 529540, 1996.
[6] E. Kranakis, D. Krizanc, and S.S. Ravi, “On MultiLabel Linear Interval Routing Schemes,” The Computer J., vol. 39, pp. 133139, 1996.
[7] R. Královic, P. Ruzicka, and D. Stefankovic, “The Complexity of Shortest Path and Dilation Bounded Interval Routing,” Proc. Third Int'l EuroPar Conf., pp. 258265, 1997.
[8] P. Ruzicka, “A Note on The Efficiency of An Interval Routing Algorithm,” The Computer J., vol. 34, pp. 475476, 1991.
[9] N. Santoro and R. Khatib, “Labelling and Implicit Routing in Networks,” The Computer J., vol. 28, pp. 58, 1985.
[10] R.B. Tan and J. van Leeuwen, “Compact Routing Methods: A Survey,” Proc. Colloquium Structural Information Information and Comm. Complexity, pp. 99109, 1994.
[11] S.S.H. Tse and F.C.M. Lau, “A Lower Bound for Interval Routing in General Networks,” Networks, vol. 29, pp. 4953, 1997.
[12] S.S.H. Tse and F.C.M. Lau, “Lower Bounds for MultiLabel Interval Routing,” Proc. Second Colloquium Structural Information&Comm. Complexity (SIROCCO '95), pp. 123134, 1995.
[13] S.S.H. Tse and F.C.M. Lau, “An Optimal Lower Bound for Interval Routing in General Networks,” Proc. Fourth Int'l Colloquium Structural Information and Comm. Complexity (SIROCCO'97), pp. 112124, 1997.
[14] S.S.H. Tse and F.C.M. Lau, “Two Lower Bounds for MultLabel Interval Routing,” Proc. Computing: The Australasian Theory Symp. (CATS '97), pp. 3643, 1997.
[15] J. van Leeuwen and R.B. Tan, “Interval Routing,” The Computer J., vol. 30, no. 4, pp. 298307, Aug. 1987.
[16] Table of Largest (Degree, Diameter)Graphs, maintained by Dept. of Applied Mathematics and Telematics, Universitat Politècnica de Catalunya, Spain,http://maite71. upc. es/grup_de_grafstable_g. html .