
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Germain Drolet, "A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic Circuits," IEEE Transactions on Computers, vol. 47, no. 9, pp. 938946, September, 1998.  
BibTex  x  
@article{ 10.1109/12.713313, author = {Germain Drolet}, title = {A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic Circuits}, journal ={IEEE Transactions on Computers}, volume = {47}, number = {9}, issn = {00189340}, year = {1998}, pages = {938946}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.713313}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic Circuits IS  9 SN  00189340 SP938 EP946 EPD  938946 A1  Germain Drolet, PY  1998 KW  Galois field arithmetic KW  normal basis KW  dual basis KW  canonical basis KW  VLSI implementation. VL  47 JA  IEEE Transactions on Computers ER   
Abstract—Let F_{2} denote the binary field and
[1] F.J. MacWilliams and N.J.A. Sloane, The Theory of ErrorCorrecting Codes.New York: NorthHolland, 1977.
[2] N. Koblitz, A Course in Number Theory and Cryptography, GTM. SpringerVerlag, 1987.
[3] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962971, Aug. 1992.
[4] T.K. Truong, I.S. Reed, and M.T. Shih, "Efficient Multiplication Algorithm Over the Finite Fields GF(qm) Where q = 3, 5," IEE Proc., Part E, vol. 140, no. 2, pp. 9294, Mar. 1993.
[5] M.A. Hasan and V.K. Bhargava,"Division and BitSerial Multiplication overGF(qm)," IEE Proc. E., vol. 139, pp. 230236, May 1992.
[6] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of Finite Fields$GF(2^m)$,” Information and Computation, vol. 83, pp. 2140, 1989.
[7] C.S. Yeh, I.S. Reed, and T.K. Truong, "Systolic Multipliers for Finite Fields GF(2m)," IEEE Trans. Computers, vol. 33, no. 4, pp. 357360, Apr. 1984.
[8] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields,” IEEE Trans. Computers, vol. 45, no. 7, pp. 846861, July 1996.
[9] E. Mastrovito, "VLSI Architectures for Computations in Galois Fields," PhD thesis, Dept. of Electrical Eng., Linköping Univ., Linköping, Sweden, 1991.
[10] S.T.J. Fenn, D. Taylor, and M. Benaissa, "Division Over GF(2m)," Electronics Letters, vol. 28, no. 24, pp. 2,2592,261, Nov. 1992.
[11] H. Brunner, A. Curiger, and M. Hofstetter, On Computing Multiplicative Inverses in${\rm GF}(2^m)$ IEEE Trans. Computers, vol. 42, no. 8, pp. 10101015, Aug. 1993.
[12] P.A. Scott, S.J. Simmons, S.E. Tavares, and L.E. Peppard, Architectures for Exponentiation in$GF(2^m)$ IEEE J. Selected Areas in Comm., vol. 6, no. 3, pp. 578586, Apr. 1988.
[13] J.L. Massey and J.K. Omura, "Computational Method and Apparatus for Finite Field Arithmetic," U.S. Patent Application, 1981.
[14] J.K. Wolf, “Efficient Circuits for Multiplying in$\big. {\rm GF}(2^m)\bigr.$for Certain Values of$\big. m\bigr.$,” Discrete Math., vols. 106/107, pp. 497502, 1992.
[15] D.B. Gravel, "Improved VLSI Design for Decoding Concatenated Codes Comprising an Irreducible Cyclic Code and a ReedSolomon (N, K) Code," MEng dissertation, Royal Military College of Canada, Kingston, Ontario, May 1995.
[16] D.B. Gravel, G. Drolet, and C.N. Rozon, "Improved VLSI Design for Decoding Concatenated Codes Comprising an Irreducible Cyclic Code and a ReedSolomon Code," Information Theory and Applications II. SpringerVerlag, 1996.
[17] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in$GF(2^m)$Using Normal Basis,” Information and Computing, vol. 78, pp. 171177, 1988.
[18] C.C. Wang,T.K. Truong,H.M. Shao,L.J. Deutsch,J.K. Omura, and I.S. Reed,"VLSI Architectures for Computing Multiplications and Inverses inGF(2m)," IEEE Trans. Computers, vol. 34, no. 8, pp. 709716, Aug. 1985.
[19] E.R. Berlekamp and J. Justesen, "Some Long Cyclic Linear Binary Codes Are Not So Bad," IEEE Trans. Information Theory, vol. 20, pp. 351356, May 1974.
[20] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified MasseyOmura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp. 12781280, Oct. 1993.
[21] D. Knuth, The Art of Computer Programming, Vol. 2, AddisonWesley, Reading, Mass., 1998.
[22] G.B. Agnew, T. Beth, R.C. Mullin, and S.A. Vanstone, "Arithmetic Operations in GF(2m)," J. Cryptology, vol. 6, pp. 313, 1993.
[23] Y. Sugiyama, "An Algorithm for Solving Discrete Time WienerHopf Equations Based on Euclid's Algorithm," IEEE Trans. Information Theory, vol. 32, pp. 394409, May 1986.
[24] F.G. Gustavson and D.Y.Y. Yun, "Fast Computation of PadéApproximants and Toeplitz Systems of Equations Via the Extended Euclidean Algorithm," Technical Report RC 7551 (#32646) 3/9/79, IBM, Yorktown Heights, N.Y.
[25] R.P. Brent, F.G. Gustavson, and D.Y.Y. Yun, "Fast Solution of Toeplitz Systems of Equations and Computation of PadéApproximants," J. Algorithms, vol. 1, pp. 259295, 1980.
[26] R.R. Bitmead and B.D.O. Anderson, "Assymptotically Fast Solution of Toeplitz and Related Systems of Linear Equations," Linear Algebra and its Applications, vol. 34, pp. 103116, 1980.
[27] S. Lin and D. J. Costello,Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: PrenticeHall, 1983.