This Article 
 Bibliographic References 
 Add to: 
Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields
August 1998 (vol. 47 no. 8)
pp. 883-887

Abstract—New implementations of bit-parallel multipliers for a class of finite fields are proposed. The class of finite fields is constructed with irreducible AOPs (all one polynomials) and ESPs (equally spaced polynomials). The size and time complexities of our proposed multipliers are lower than or equal to those of the previously proposed multipliers of the same class.

[1] E.R. Berlekamp,"Bit-Serial Reed-Solomon Encoders," IEEE Trans. Information Theory, vol. 28, pp. 869-874, Nov. 1982.
[2] S.T.J. Fenn, M. Benaissa, and D. Taylor, $GF(2^m)$Multiplication and Division over the Dual Basis IEEE Trans. Computers, vol. 45, no. 3, pp. 319-327, Mar. 1996.
[3] G. Harper, A. Menezes, and S. Vanstone, "Public-Key Cryptosystems with Very Small Key Lengths," Advances in Cryptology—Crypto '93, pp. 163-173. Springer-Verlag, 1993.
[4] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962-971, Aug. 1992.
[5] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993.
[6] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of Finite Fields$GF(2^m)$,” Information and Computation, vol. 83, pp. 21-40, 1989.
[7] R. Lidl and H. Niederreiter, Finite Fields.Reading, Mass.: Addison-Wesley, 1983.
[8] M. Morii,M. Kasahara, and D.L. Whiting,"Efficient Bit-Serial Multiplication and the Discrete-Time Wiener-Hopft Equation over Finite Fields," IEEE Trans. Information Theory, vol. 35, pp. 1,177-1,183, Nov. 1989.
[9] R.C. Mullin,I.M. Onyszchuk,S.A. Vanstone, and R.M. Wilson,"Optimal Normal Bases inGF(pn)," Discrete Applied Maths., pp. 142-169, 1988/89.
[10] C.C. Wang,T.K. Truong,H.M. Shao,L.J. Deutsch,J.K. Omura, and I.S. Reed,"VLSI Architectures for Computing Multiplications and Inverses inGF(2m)," IEEE Trans. Computers, vol. 34, no. 8, pp. 709-716, Aug. 1985.

Index Terms:
Galois or finite fields, bit-parallel multiplier, all one polynomial, equally spaced polynomial, dual basis.
Huapeng Wu, M. Anwarul Hasan, "Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields," IEEE Transactions on Computers, vol. 47, no. 8, pp. 883-887, Aug. 1998, doi:10.1109/12.707588
Usage of this product signifies your acceptance of the Terms of Use.