
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Christof Paar, Peter Fleischmann, Peter Roelse, "Efficient Multiplier Architectures for Galois Fields GF(24n)," IEEE Transactions on Computers, vol. 47, no. 2, pp. 162170, February, 1998.  
BibTex  x  
@article{ 10.1109/12.663762, author = {Christof Paar and Peter Fleischmann and Peter Roelse}, title = {Efficient Multiplier Architectures for Galois Fields GF(24n)}, journal ={IEEE Transactions on Computers}, volume = {47}, number = {2}, issn = {00189340}, year = {1998}, pages = {162170}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.663762}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Efficient Multiplier Architectures for Galois Fields GF(24n) IS  2 SN  00189340 SP162 EP170 EPD  162170 A1  Christof Paar, A1  Peter Fleischmann, A1  Peter Roelse, PY  1998 KW  Galois fields KW  composite fields KW  multiplication KW  Karatsuba Ofman KW  modulo reduction KW  bit parallel KW  VLSI architecture. VL  47 JA  IEEE Transactions on Computers ER   
Abstract—This contribution introduces a new class of multipliers for finite fields
[1] V.B. Afanasyev, "Complexity of VLSI Implementation of Finite Field Arithmetic," Proc. II. Int'l Workshop Algebraic and Combinatorial Coding Theory, pp. 67,Leningrad, Sept. 1990.
[2] V.B. Afanasyev, "On the Complexity of Finite Field Arithmetic," Proc. Fifth Joint SovietSwedish Int'l Workshop Information Theory, pp. 912,Moscow, Jan. 1991.
[3] R.E. Blahut, Fast Algorithms for Digital Signal Processing.Reading, Mass.: AddisonWesley, 1985.
[4] A. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and T. Yaghgoobin, Applications of Finite Fields. Kluwer Academic Publisher, 1993.
[5] S.T.J. Fenn, M. Benaissa, and D. Taylor, $GF(2^m)$Multiplication and Division over the Dual Basis IEEE Trans. Computers, vol. 45, no. 3, pp. 319327, Mar. 1996.
[6] W. Geiselmann, "Algebraische Algorithmenentwicklung am Beispiel der Arithmetik in Endlichen Körpern," PhD thesis, Universität Karlsruhe, Fakultät für Informatik, Institut für Algorithmen und Kognitive Systeme, Karlsruhe, Germany, 1993.
[7] D.H. Green and I.S. Taylor, "Irreducible Polynomials over Composite Galois Fields and Their Applications in Coding Techniques," Proc. IEE, vol. 121, no. 9, pp. 935939, Sept. 1974.
[8] M.A. Hasan, "Efficient Computations in Galois Fields," PhD thesis, Dept. of Electrical and Computer Eng., Univ. of Victoria, Canada, Apr. 1992.
[9] M.A. Hasan, M. Wang, and V.K. Bhargava, "Division and BitSerial Multiplication over GF(qm)," IEEE Trans. Computers, vol. 41, no. 8, pp. 972980, Aug. 1992.
[10] M.A. Hasan, M. Wang, and V.K. Bhargava, Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields$GF(2^m)$ IEEE Trans. Computers, vol. 41, no. 8, pp. 962971, Aug. 1992.
[11] I.S. Hsu,T.K. Truong,L.J. Deutsch, and I.S. Reed,"A Comparison of VLSI Architectures of Finite Field Multipliers Using Dual, Normal or Standard Bases," IEEE Trans. Computers, vol. 37, no. 6, pp. 735737, June 1988.
[12] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of Finite Fields$GF(2^m)$,” Information and Computation, vol. 83, pp. 2140, 1989.
[13] Y. Jeong, "VLSI Algorithms and Architectures for RealTime Computation over Finite Fields," PhD thesis, Dept. of Electrical and Computer Eng., Univ. of Massachusetts at Amherst, Feb. 1995.
[14] A. Karatsuba and Y. Ofman, "Multiplication of Multidigit Numbers on Automata," Sov. Phys.Dokl. (English translation), vol. 7, no. 7, pp. 595596, 1963.
[15] D. Knuth, The Art of Computer Programming, Vol. 2, AddisonWesley, Reading, Mass., 1998.
[16] N. Koblitz, "Elliptic Curve Cryptosystems," Math. Computation, vol. 48, pp. 203209, 1987.
[17] N. Koblitz, "Hyperelliptic Cryptosystems," J. Cryptology, vol. 1, no. 3, pp. 129150, 1989.
[18] H. Kummer, "Recommendation for Space Data System Standards: Telemetry Channel Coding: Issue1," Consult. Comm. Space Data Systems, Sept. 1983.
[19] R. Lidl and H. Niederreiter, Finite Fields, vol. 20, Encyclopedia of Math. and Its Applications. Reading, Mass.: AddisonWesley, 1983.
[20] E.D. Mastrovito,"VLSI Design for Multiplication over Finite Fields," LNCS357, Proc. AAECC6, pp. 297309,Rome, July 1988, SpringerVerlag.
[21] E.D. Mastrovito, "VLSI Architectures for Computation in Galois Fields," PhD thesis, Dept. of Electrical Eng., Linköping Univ., Linköping, Sweden, 1991.
[22] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, Fla., 1996, pp. 543590.
[23] H. Meyn, "On the Construction of Irreducible SelfReciprocal Polynomials over Finite Fields," Applicable Algebra Eng., Comm., and Computing, vol. 1, no. 1, pp. 4353, 1990.
[24] C. Paar, "Efficient VLSI Architectures for BitParallel Computation in Galois Fields," PhD thesis, (English translation), Inst. for Experimental Math., Univ. of Essen, Essen, Germany, June 1994.
[25] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields,” IEEE Trans. Computers, vol. 45, no. 7, pp. 846861, July 1996.
[26] C. Paar, "Optimized Arithmetic for ReedSolomon Encoders," Proc. 1997 IEEE Int'l Symp. Information Theory, p. 250,Ulm, Germany, June 29 July4, 1997.
[27] C. Paar and N. Lange, "A Comparative VLSI Synthesis of Finite Field Multipliers," Proc. Third Int'l Symp. Comm. Theory and Its Applications,Lake District, U.K., July1014, 1995.
[28] A. Pincin, "A New Algorithm for Multiplication in Finite Fields," IEEE Trans. Computers, vol. 38, no. 7, pp. 1,0451,049, July 1989.
[29] P.A. Scott,S.E. Tavares, and L.E. Peppard,"A Fast VLSI Multiplier forGF(2m)," IEEE J. Selected Areas of Comm., vol. 4, pp. 6266, Jan. 1986.
[30] C.C. Wang and D. Pei, "A VLSI Design for Computing Exponentiation in GF(2m) and Its Application to Generate Pseudorandom Number Sequences," IEEE Trans. Computers, vol. 39, no. 2, pp. 258262, Feb. 1990.
[31] C.C. Wang,T.K. Truong,H.M. Shao,L.J. Deutsch,J.K. Omura, and I.S. Reed,"VLSI Architectures for Computing Multiplications and Inverses inGF(2m)," IEEE Trans. Computers, vol. 34, no. 8, pp. 709716, Aug. 1985.
[32] ReedSolomon Codes and Their Applications, S.B. Wicker and V.K. Bhargava, eds. IEEE Press, 1994.