This Article 
 Bibliographic References 
 Add to: 
A Search of Minimal Key Functions for Normal Basis Multipliers
May 1997 (vol. 46 no. 5)
pp. 588-592

Abstract—The circuit complexity of a Massey-Omura normal basis multiplier for a finite field GF(2m) depends on the key function for multiplication. Key functions with minimum complexity, called minimal key functions, are desirable. This paper investigates the complexity of a key function and reports search results of minimal key functions. A table of minimal key functions for m up to 31 is included.

[1] E.R. Berlekamp, Algebraic Coding Theory.New York: McGraw-Hill, 1968.
[2] W.W. Peterson and E.J. Weldon Jr., Error-Correcting Codes, second edition. Cambridge, Mass.: MIT Press, 1972.
[3] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes.Amsterdam: NorthHolland, 1977.
[4] S. Lin and D. J. Costello,Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[5] D.E.R. Denning, Cryptography and Data Security. Addison-Wesley, 1983.
[6] J.L. Massey and J.K. Omura, "Computational Method and Apparatus for Finite Field Arithmetic," U.S. Patent.
[7] C.C. Wang,T.K. Truong,H.M. Shao,L.J. Deutsch,J.K. Omura, and I.S. Reed,"VLSI Architectures for Computing Multiplications and Inverses inGF(2m)," IEEE Trans. Computers, vol. 34, no. 8, pp. 709-716, Aug. 1985.
[8] R. Lidl and H. Niederreiter, Finite Fields.Reading, Mass.: Addison-Wesley, 1983.

Index Terms:
Finite field, normal basis, multiplier, coding, cryptography.
Chung-Chin Lu, "A Search of Minimal Key Functions for Normal Basis Multipliers," IEEE Transactions on Computers, vol. 46, no. 5, pp. 588-592, May 1997, doi:10.1109/12.589230
Usage of this product signifies your acceptance of the Terms of Use.