
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Hong Yang, WeiBo Gong, "Rational Approximants for Some Performance Analysis Problems," IEEE Transactions on Computers, vol. 44, no. 12, pp. 13941404, December, 1995.  
BibTex  x  
@article{ 10.1109/12.477245, author = {Hong Yang and WeiBo Gong}, title = {Rational Approximants for Some Performance Analysis Problems}, journal ={IEEE Transactions on Computers}, volume = {44}, number = {12}, issn = {00189340}, year = {1995}, pages = {13941404}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.477245}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Rational Approximants for Some Performance Analysis Problems IS  12 SN  00189340 SP1394 EP1404 EPD  13941404 A1  Hong Yang, A1  WeiBo Gong, PY  1995 KW  Performance analysis KW  approximation techniques KW  queueing networks KW  multiprocessor systems KW  Markov chains KW  asymptotic analysis. VL  44 JA  IEEE Transactions on Computers ER   
[1] G.A. Baker and P. GravesMorris,PadéApproximants, Part I: Basic Theory.Reading, Mass: AddisonWesley, 1981.
[2] G.A. Baker and P. GravesMorris,PadéApproximants, Part II: Extensions and Applications.Reading, Mass: AddisonWesley, 1981.
[3] D.J. Bertsimas and L.D. Servi,“Deducing queueing from transactional data: The queue inference engine, revised,” Operations Research, vol. 40, pp. 217228, 1992.
[4] D. Braess,Nonlinear Approximation Theory. SpringerVerlag, 1986.
[5] C. Brezinski and M. Redivo Zaglia,Extrapolation MethodsTheory and Practice.New York: NorthHolland, 1991.
[6] A.E. Conway and N.D. Georganas, Queueing Networks—Exact Computational Algorithms. MIT Press, 1989.
[7] D.J. Daley and L.D. Servi,“Approximating last exit probabilities of a random walk, with application to busy periods of M/GI/1 queues,” manuscript 1992.
[8] D. Gibson and E. Seneta,“Monotone infinite stochastic matrices and their augmented truncations,” Stochastic Proceedings Application, vol. 24, pp. 287292, 1987.
[9] D. Gibson and E. Seneta,“Augmented truncations of infinite stochastic matrices,” J. Applied Probabilities, vol. 24, pp. 600608, 1987.
[10] W.B. Gong,S. Nananukul,, and A. Yan,“Padéapproximation for stochastic discrete event systems,” IEEE Trans. Automatic Control, Aug. 1995.
[11] J.J. Gordon, “The evaluation of normalizing constants in closed queueing networks,” Operations Research, vol. 38, pp. 863869, 1990.
[12] D.P. Heyman,“Approximating the stationary distribution of an infinite stochastic matrix,” J. Applied Probabilities., vol. 28, pp. 96103, 1991.
[13] J. Karlsson,“Rational interpolation and best rational approximation,” J. Math. Anal. and Appl., vol. 53, pp. 3852, 1976.
[14] R. Larson,“The queue inference engine: deducing queue statistics from transactional data,” Management Science, vol. 36, pp. 586601, 1990.
[15] M. Ajmone Marsan, G. Balbo, and G. Conte, Performance Models of Multiprocessor Systems.Cambridge, Mass.: MIT Press, 1986.
[16] J. McKenna,D. Mitra,, and K.G. Ramakrishnan,“A class of closed Markovian queueing networks: Integral representations, asymptotic expansions, and generalizations,” Bell Systems Technical J., vol. 60, pp. 599641, 1981.
[17] L.M. MilneThomson,The Calculus of Finite Differences.London: MacMillan., 1951.
[18] P.P. Petrushev, and V.A. Popov,Rational Approximation of Real Functions.London: Cambridge Univ. Press, 1987.
[19] E.B. Saff,R.S. Varga,, and W.C. Ni,“Geometric convergence of rational approximations to in infinite sectors,” Numerical Mathematics, vol. 26, pp. 211225, 1976.
[20] A.F. Timan,Theory of Approximation of Functions of a Real Variable.New York: Macmillan, 1963.
[21] H. Werner,“A reliable method for rational interpolation,” PadéApproximation and its Applications, L. Wuytack, ed., pp. 257277, SpringerVerlag, 1979.
[22] J.M. Whittaker,Interpolatory Function Theory.New York: StechertHafner Service Agency, 1964.
[23] D. Wolf,“Approximation of the invariant probability measure of an infinite stochastic matrix,” Adv. Appl. Prob., vol. 12, pp. 710726, 1980.
[24] L. Wuytack,“A new technique for rational extrapolation to the limit,” Numerical Mathematics., vol. 17, pp. 215221, 1971.
[25] H. Yang and W.B. Gong,“On calculating the normalization constants in queueing networks,” Proc. 33rd CDC, pp. 2,0752,076, 1994.