Subscribe

Issue No.08 - August (1995 vol.44)

pp: 1047-1051

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/12.403721

ABSTRACT

<p><it>Abstract</it>—A self-routing multi-log<it>N</it> permutation network is presented and studied. This network has 3log<sub>2</sub><it>N</it>− 2 depth and <math><tmath>$N(\log_2^\gamma N)$</tmath></math>(3log<sub>2</sub>, <it>N</it>− 2)/2 nodes, where <it>N</it> is the number of network inputs and γ a constant very close to 1. A parallel routing algorithm runs in 3log<sub>2</sub><it>N</it>− 2 time on this network. The overall system (network and algorithm) can work in pipeline and it is asymptotically nonblocking in the sense that its blocking probability vanishes when <it>N</it> increases, hence the quasi-totality of the information synchronously arrives in 3log<sub>2</sub><it>N</it>− 2 steps at the network outputs. This network presents very good fault tolerance, a modular architecture, and it is suitable for information exchange in very large scale parallel processors and communication systems.</p>

INDEX TERMS

Permutation networks, self-routing algorithm, blocking probability, stack of banyan networks.

CITATION

C. Ferrone, G.a. De Biase, A. Massini, "An O(log2 N) Depth Asymptotically Nonblocking Self-Routing Permutation Network",

*IEEE Transactions on Computers*, vol.44, no. 8, pp. 1047-1051, August 1995, doi:10.1109/12.403721