
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
C. H. Lin, C. C. Chang, R. C. T. Lee, "A New PublicKey Cipher System Based Upon the Diophantine Equations," IEEE Transactions on Computers, vol. 44, no. 1, pp. 1319, January, 1995.  
BibTex  x  
@article{ 10.1109/12.368013, author = {C. H. Lin and C. C. Chang and R. C. T. Lee}, title = {A New PublicKey Cipher System Based Upon the Diophantine Equations}, journal ={IEEE Transactions on Computers}, volume = {44}, number = {1}, issn = {00189340}, year = {1995}, pages = {1319}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.368013}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A New PublicKey Cipher System Based Upon the Diophantine Equations IS  1 SN  00189340 SP13 EP19 EPD  1319 A1  C. H. Lin, A1  C. C. Chang, A1  R. C. T. Lee, PY  1995 VL  44 JA  IEEE Transactions on Computers ER   
[1] E. F. Brickell,“A new knapsack based cryptosystem,”inCrypto '83, rump session, 1983.
[2] C. C. Chang and J. C. Shieh,“Pairwise relatively prime generating polynomials and their applications,”inProc. Int. Workshop on Discrete Algorithms and Complexity,Kyushu, Japan, Nov. 1989, pp. 137–140.
[3] B. Chor, and R. L. Rivest,“Knapsack Type Public Key Cryptosystem Based on Arithmetic in Finite Field,”IEEE Trans. Inform. Theory,vol. 34, No. 5, 1988, pp. 901–909.
[4] S. A. Cook,“The Complexity of TheoremProving Procedures,”Proc. 3rd Ann. ACM Symposium on Theory of Computing,New York: Association for Computing Machinery, 1971, pp. 151–155.
[5] D.E.R. Denning, Cryptography and Data Security. AddisonWesley, 1983.
[6] W. Diffie and M. Hellman,“New directions in cryptography,”IEEE Trans. Inform. Theory,vol. 22, pp. 644–654, 1976.
[7] T. El Gamal,“A public key cryptosystem and signature scheme based on discrete logarithms,”IEEE Trans. Inform. Theory,vol. 31, no. 4, pp. 469–472, 1985.
[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness.New York: W.H. Freeman, 1979.
[9] S. Goldwasser and S. Micali,“Probabilistic encryption,”J. Comp. Syst. Sci.,vol. 28, no. 2, pp. 270–299, 1984.
[10] E. M. Gurari, and O. H. Ibarra,“An Npcomplete number theoretic problem,”inProc. 10th Ann. ACM Symp. Theory Computing.New York: Association for Computing Machinery, 1978, pp. 205–215.
[11] D. Hilbert,“Mathematische Probleme,”Vortrag, gehalten auf dem internationalen Mathematiker Kongrass zu Paris, 1900,Nachr. Akad. Wiss. Gottingen Math.Phys.,pp. 253–297; Translation:Bull. Am. Math. Soc.,vol. 8, 1901, pp. 437–479.
[12] D.E. Knuth, The Art of Computer Programming, vol. 1,Addison Wesley, second ed. 1973.
[13] ——,The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,2nd ed. Reading, MA: AddisonWesley, 1981.
[14] K. Manders and L. Adleman,“NPcomplete decision problems for binary quadratics,”J. Comput. Syst. Sci.,vol. 16, pp. 168–184, 1978.
[15] Y. Matijasevi$\check{\rm c}$,“Enumerable sets are Diophantine,”Dokl. Akad. Nauk SSSR,vol. 191, 1970, pp. 279–282 (in Russian); English translation inSoviet Math. Dokl.,vol. 11, pp. 354–357.
[16] Y. Matijasevi$\check{\rm c}$and J. Robinson,“Reduction of an arbitrary Diophantine equation to one in 13 unknowns,”Acta Arithmetica,vol. 27, pp. 521–553, 1975.
[17] R. C. Merkle and M. Hellman,“Hiding information and signatures in trapdoor knapsacks,”IEEE Trans. Inform. Theory,vol. 24, pp. 525–530, 1978.
[18] L. J. Mordell,Diophantine Equations,vol. 30 inPure and Applied Mathematics,Paul A. Smith and Samuel Eilenberg, Eds. London and New York: Academic Press, 1969.
[19] S. C. Pohlig and M. E. Hellman,“An improved algorithm for computing logarithms over GF(p) and its cryptographic significance,”IEEE Trans. Inform. Theory,vol. 24, no. 1, pp. 106–110.
[20] M. O. Rabin,“Digitalized signatures and publickey functions as intractable as factorization,”Tech. Rep. TR212, Laboratory for Computer Science, MIT, 1979.
[21] R.L. Rivest,A. Shamir, and L.A. Adleman,"A Method for Obtaining Digital Signatures and Public Key Cryptosystems," Comm. ACM, vol. 21, pp. 120126, 1978.
[22] A. Shamir,“Embedding cryptographic trapdoors in arbitrary knapsack systems,”Technical memo TM230, Laboratory for Computer Science, MIT, 1982.
[23] T. Skolem,“Diophatische gleichungen,”Ergebisse d. Math. u. Ihrer Grenzgebiete, Bd. 5,Julius Springer, 1938.
[24] S. P. Tung,“Computational complexities of diophantine equations with parameters,”J. Algorithms,vol. 8, 1987, pp. 324–336.
[25] S. P. Tung,“Complexity of sentences over number rings,”SIAM J. Computing,vol. 20, No. 1, February 1991, pp. 126–143.
[26] H. C. Williams,“A modification of the RSA publickey encryption procedure,”IEEE Trans. Information Theory,vol. 26, 1980, pp. 726–729.