This Article 
 Bibliographic References 
 Add to: 
A Unified and Division-Free CORDIC Argument Reduction Method with Unlimited Convergence Domain Including Inverse Hyperbolic Functions
November 1994 (vol. 43 no. 11)
pp. 1339-1344

One of the main problems of the CORDIC algorithm is the limited convergence domain, in which the functions can be calculated. Two different approaches can be employed to overcome this constraint: first, an argument reduction method and, second, an expansion of the CORDIC convergence domain. While the first approach requires significant processing overhead due to the need for divisions especially for tanh/sup -1/, the second technique achieves an increased but still limited convergence domain only. In this brief contribution, we present a unified division-free argument reduction method and a regular pipeline/array architecture for floating point or fixed point implementations which results in savings of computation time. In contrast to previous methods we avoid extra CORDIC arithmetic for realization of argument reduction.

[1] J. E. Volder, "The CORDIC trigonometric computing technique,"IRE Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330-334, Sept. 1959.
[2] J. S. Walther, "A unified algorithm for elementary functions," inSpring Joint Comput. Conf. (SJCC), 1971, pp. 379-385.
[3] G. L. Haviland and A. A. Tuszynski, "A CORDIC arithmetic processor chip,"IEEE J. Solid-State Circuits, vol. SC-15, no. 1, pp. 4-15, Feb. 1980.
[4] H. M. Ahmed, "Signal processing algorithms and architectures," Ph.D. dissertation, Dep. Elec. Eng., Stanford Univ., 1982.
[5] E. F. Deprettere, P. Dewilde, and R. Udo, "Pipelined CORDIC architectures for fast VLSI filtering and array processing," inProc. Int. Conf. Acoust. Speech. Signal Processing (ICASSP 84), 1984, pp. 41. A.6.1.-41.A.6.5.
[6] N. Takagi, T. Asada, and S. Yajima, "Redundant CORDIC methods with a constant scale factor for sine and cosine computation,"IEEE Trans. Comput., vol. 40, no. 9, pp. 989-995, Sept. 1991.
[7] A. A. J. de Lange, A. J. van der Hoeven, E. F. Deprettere, and J. Bu, "An optimal floating point pipeline CMOS CORDIC processor," inProc. 1988 Int. Symp. Circuits Syst., Helsinki, Finland, 1988, pp. 2043-2047.
[8] H. Yoshimura, T. Nakanishi, and H. Tamauchi, "A 50 Mhz CMOS geometrical mapping processor,"Tech. Dig. ISSCC, pp. 162-163, 1988.
[9] X. Hu, R. G. Haber, and S. C. Bass, "Expanding the range of convergence of the CORDIC algorithm,"IEEE Trans. Comput., vol. 40, no. 1, pp. 13-21, Jan. 1991.
[10] H. Hahn, "Untersuchung und Integration von Berechnungsverfahren elementarer Funktionen auf CORDIC-Basis mit Anwendungen in der adaptiven Signalverarbeitung,"Fortschritt-Berichte VDI, Reine 9, no. 125, VDI Verlag, Düsseldorf, 1991.
[11] D. Timmermann, H. Hahn, B. J. Hosticka, and G. Schmidt, "A programmable CORDIC chip for digital signal processing applications,"IEEE J. Solid-State Circuits, vol. 26, no. 9, pp. 1317-1321, Sept. 1991.
[12] B. Rix, D. Timmermann, H. Hahn, and B. J. Hosticka, "A CORDIC-based floating-point arithmetic unit," inIEEE Custom Integrated Circ. Conf. (CICC92), Boston, MA, May 1992, pp. 30.3.1-30.3.4.
[13] R. Hartley, "Optimization of canonic signed digit multipliers for filter design," inProc. Int. Symp. Circ. Syst., Singapore, May 1991, pp. 1992-1995.
[14] D. Timmermann, H. Hahn, and B. Hosticka, "Low latency time CORDIC algorithms,"IEEE Trans. Comput., vol. 41, no. 8, pp. 1010-1015, Aug. 1992.

Index Terms:
digital arithmetic; mathematics computing; CORDIC argument reduction method; convergence domain; inverse hyperbolic functions; unified division-free argument reduction method; floating point implementation; fixed point implementation.
H. Hahn, D. Timmermann, B.J. Hosticka, B. Rix, "A Unified and Division-Free CORDIC Argument Reduction Method with Unlimited Convergence Domain Including Inverse Hyperbolic Functions," IEEE Transactions on Computers, vol. 43, no. 11, pp. 1339-1344, Nov. 1994, doi:10.1109/12.324568
Usage of this product signifies your acceptance of the Terms of Use.