This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Bit-Level Systolic Array for Fast Exponentiation in GF(2/sup m/)
July 1994 (vol. 43 no. 7)
pp. 838-841

This paper presents a new parallel-in-parallel-out bit-level systolic array with unidirectional data flow for computing exponentiation in GF(2/sup m/). The array is highly regular, modular, and thus well suited to very-large-scale-integration implementation. In addition, it can provide the maximum throughput in the sense of producing new results at a rate of one per clock cycle. As compared with a previously known systolic GF(2/sup m/) exponentiator with the same throughput performance, the proposed system requires much less chip area, has small latency, and is easier to incorporate fault-tolerant design.

[1] W. W. Peterson and E. J. Weldon, Jr.,Error-Correcting Codes. Cambridge, MA: MIT Press, 1972.
[2] E.R. Berlekamp,Algebraic Coding Theory. New York: McGraw-Hill, 1968.
[3] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting Codes. New York: North-Holland, 1977.
[4] D.E. Denning,Cryptography and Data Security, Addison-Wesley Publishing Co., Reading, Mass., 1982.
[5] P. A. Scottet al., "Architectures for exponentiation in GF(2m),"IEEE J. Select. Areas Commun., vol. SAC-6, pp. 578-586, 1988.
[6] C. C. Wang and D. Pei, "A VLSI design for computing exponentiations in GF(2m) and its application to generate pseudorandom number sequences,"IEEE Trans. Comput., vol. 39, pp. 258-262, Feb. 1990.
[7] B. Fam and J. Kowalchuk, "A VLSI device for fast exponentiation in finite fields," inProc. IEEE Int. Conf. Circuits and Computers, ICCC'82, New York, Sept. 1982, pp. 368-371.
[8] A. Ghafoor and A. Singh, "Systolic architecture for finite field exponentiation,"Proc. IEE, pt. E, vol. 136, pp. 465-470, Nov. 1989.
[9] H. T. Kung, "Why systolic architectures?,"Computer, vol. 15, pp. 37-46, Jan. 1982.
[10] C. S. Yeh, I. S. Reed, and T. K. Truong, "Systolic multipliers for finite fields GF(2m),"IEEE Trans. Comput., vol. C-33, pp. 357-360, Apr. 1984.
[11] D. E. Knuth,The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Reading, MA: Addison-Wesley, 1981.
[12] C.-L. Wang and J.-L. Lin, "Systolic array implementation of multipliers for finite fields GF(2m),"IEEE Trans. Circuits Syst., vol. 38, no. 7, pp. 796-800, July 1988.
[13] P. A. Scott, S. E. Tarvares, and L. E. Peppard, "A fast multiplier forGF(2m),"IEEE J. Select. Areas Commun., vol. SAC-4, Jan. 1986.
[14] B. A. Laws, Jr. and C. K. Rushforth, "A cellular-array multiple for GF(2m),"IEEE Trans. Comput., vol. C-20, pp. 1573-1578, Dec. 1971.
[15] H. T. Kung and M. Lam, "Fault tolerance and two level pipelining in VLSI systolic arrays," inProc. MIT Conf. Advanced Res. VLSI, Cambridge, MA, Jan. 1984, pp. 74-83.
[16] J. V. McCanny, R. A. Evans, and J. G. McWhirter, "Use of unidirectional data flow in bit-level systolic array chips,"Electron. Lett., vol. 22, pp. 540-541, May 1986.

Index Terms:
VLSI; systolic arrays; fault tolerant computing; bit-level systolic array; fast exponentiation; unidirectional data flow; very-large-scale-integration implementation; small latency; fault-tolerant design.
Citation:
Chin-Liang Wang, "Bit-Level Systolic Array for Fast Exponentiation in GF(2/sup m/)," IEEE Transactions on Computers, vol. 43, no. 7, pp. 838-841, July 1994, doi:10.1109/12.293263
Usage of this product signifies your acceptance of the Terms of Use.