This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Over-Redundant Digit Sets and the Design of Digit-By-Digit Division Units
March 1994 (vol. 43 no. 3)
pp. 269-277

Over-redundant digit sets are defined as those ranging from /spl minus/s to +s, with s/spl ges/B, B being the radix. This paper presents new techniques for the direct computation of division, that use an over-redundant digit set for representing the quotient, instead of simply redundant ones used previously. In particular, general criteria for synthesizing the digit selection rules and remainder updating are given for any radix and index of redundancy. A methodology combining the use of over-redundant digit sets with the prescaling of the divisor is also studied in order to achieve radix-B division units with trivial digit selection functions. It is also shown, for the specific case of radix-4 that using a prescaling slightly wider than in a radix-4 unit by M.D. Ercegovac and T. Lang (1990) possible to avoid the digit selection table. The paper also presents a modified algorithm for on-the-fly conversion of the result into the irredundant form. The proposed methodology can be considered as an alternative to existing division techniques.

[1] D. E. Atkins, "Higher-radix division using estimates of the divisor and partial remainders,"IEEE Trans. Comput., vol. C-17, pp. 925-934, Oct. 1968.
[2] A. Avizienis, "Signed-digit number representation for fast parallel arithmetic,"IRE Trans. Electron. Comput., vol. EC-10, pp. 389-400, Sept. 1961.
[3] W. S. Briggs and D. W. Matula, "Method and apparatus performing division using a rectangular aspect ratio multiplier," U.S. Patent No. 5046 038, Sept. 1991.
[4] L. Ciminiera and P. Montuschi, "Higher radix square rooting,"IEEE Trans. Comput., vol. 39, no. 10, pp. 1220-1231, Oct. 1990.
[5] M. D. Ercegovac, "A higher-radix division with simple selection of quotient digits," inProc. 6th IEEE Symp. Comput. Arith., Aahrus, Denmark, June 1983, pp. 94-98.
[6] M. D. Ercegovac and T. Lang, "On-the-fly conversion of redundant into conventional representations,"IEEE Trans. Comput., vol. C-36, no. 7, pp. 895-897, July 1987.
[7] M. D. Ercegovac and T. Lang, "On-line scheme for computing rotation factors,"J. Parallel and Distributed Computing, vol. 5, pp. 209-227, 1988.
[8] M. D. Ercegovac and T. Lang, "Fast radix-2 division with quotient-digit prediction,"J. VLSI Signal Processing, vol. 1, pp. 169-180, 1989.
[9] M. D. Ercegovac and T. Lang, "Simple radix-4 division with operands scaling,"IEEE Trans. Comput., vol. 39, pp. 1204-1208, Sept. 1990.
[10] M. D. Ercegovac and T. Lang, "Fast multiplication without carry propagate addition,"IEEE Trans. Comput., vol. 39, pp. 1385-1390, Nov. 1990.
[11] M. D. Ercegovac, T. Lang, and P. Montuschi, "Prescaling algorithms for very-high radix division," I.R. DAI/ARC 6-92, Dipartimento di Automatica e Informatica, Potitecnico di Torino, Torino, Italy, 1992.
[12] M. D. Ercegovac and T. Lang, "Digit-recurrence algorithms and implementations for division and square root," Internal Rep., Comput. Sci. Dep., UCLA, 1992.
[13] M. D. Ercegovac, T. Lang, and P. Montuschi, "Very high radix division with selection by rounding and prescaling, in11th IEEE Symp. Comput. Arithmetic, Windsor, ON, Canada, June 1993, pp. 112-119.
[14] J. Fandrianto, "Algorithm for high speed shared radix4 division and radix4 square-root," inProc. 8th IEEE Symp. Comput. Arithmetic, Como, Italy, May 1987, pp. 73-79.
[15] J. Fandrianto, "Algorithm for high speed shared radix 8 division and radix 8 square root," inProc. 9th Symp. Comput. Arithmetic, Sept. 1989, pp. 68-75.
[16] E. V. Khrisnamurthy, "On range-transformation techniques for division,"IEEE Trans. Comput., vol. C-19, pp. 227-231, Mar. 1970.
[17] K. Hwang,Computer Arithmetic: Principles, Architecture, and Design. New York: Wiley, 1979.
[18] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi, "Design of high speed MOS multiplier and divider using redundant binary representation," inProc. 8th IEEE Symp. Comput. Arithmetic, Como, Italy, May 1987, pp. 80-86.
[19] D. W. Matula, "Design of a highly parallel floating point arithmetic unit," presented at theIEEE Symp. Combinatorial Optimizat. Sci. and Technol. (COST), at RUTCOR/DIMACS, April 1991.
[20] D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. Oxley, and B. W. Sutter, "The multilayer perceptron as an approximation to a Bayes optimal discriminant function,"IEEE Trans. Neural Networks, vol. 1, no. 4, pp. 296-298, Dec. 1990.
[21] P. Montuschi and M. Mezzalama, "Survey of square rooting algorithms,"IEE Proc., pt. E, vol. 137, pp. 31-40, Jan. 1990.
[22] P. Montuschi and L. Ciminiera, "Designing digit-by-digit division units with over-redundant digit sets," I.R. DAI/ARC 13-92, Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy.
[23] P. Montuschi and L. Ciminiera, "Design of a radix 4 division unit with simple selection table,"IEEE Trans. Comput., vol. 42, pp. 239-246, Feb. 1993.
[24] J. E. Robertson, "A new class of digital division methods,"IRE Trans. Electron. Comput., vol. EC-7, pp. 218-222, Sept. 1958.
[25] A. Svoboda, "An algorithm for division,"Inform. Processing Math., vol. 9, pp. 25-32, 1963.
[26] G. S. Taylor, "Radix 16 SRT dividers with overlapped quotient selection stages," inProc. 7th IEEE Symp. Comput. Arithmetic, Urbana, IL, June 1985, pp. 64-71.
[27] P. K.-G. Tu "On-line arithmetic algorithms for efficient implementation," Ph.D. dissertation, Comput. Sci. Dep., U.C.L.A., CSD-900029, Sept. 1990.
[28] M. J. Flynn and S. Waser,Introduction to Arithmetic for Digital Systems Designers. CBS College Publishing, 1982, pp. 215-222.
[29] T. E. Williams and M. Horowitz, "SRT division diagrams and their usage in designing custom integrated circuits for division," Tech. Rep. No. CSL-TR-87-326, Ctr. for Integrated Syst., Stanford Univ., Stanford, CA.
[30] J.B. Wilson and R. S. Ledley, "An algorithm for rapid binary division,"IRE Trans. Electron. Comput., vol. EC-10, pp. 662-670, Dec. 1961.
[31] S. Winograd, "On the time required for binary addition,"J. ACM, vol. 12, pp. 277-285, 1965.
[32] J. H. Zurawski and J. B. Gosling, "Design of a high-speed square root multiply and divide unit,"IEEE Trans. Comput., vol. C-36, pp. 13-23, Jan. 1987.

Index Terms:
digital arithmetic; logic design; computer architecture; over-redundant digit sets; digit-by-digit division units; direct computation of division; remainder updating; prescaling; radix-B division units.
Citation:
P. Montuschi, L. Ciminiera, "Over-Redundant Digit Sets and the Design of Digit-By-Digit Division Units," IEEE Transactions on Computers, vol. 43, no. 3, pp. 269-277, March 1994, doi:10.1109/12.272428
Usage of this product signifies your acceptance of the Terms of Use.