This Article 
 Bibliographic References 
 Add to: 
Fault-Tolerant Ring Embedding in de Bruijn Networks
December 1993 (vol. 42 no. 12)
pp. 1480-1486

A method of embedding a ring in a d-ary de Bruijn multiprocessor network in the event of multiple node (processor) failures is presented. In particular, the algorithm guarantees that a (2/sup n/-n-1)-node ring will be found in a binary de Bruijn network with a single faulty node, where 2/sup n/ is the total number of nodes in the network. It is also shown that a (d/sup n/-1)-node ring can always be found in the presence of d-1 link failures, when d is a prime power and the network contains d/sup n/ nodes. The latter is accomplished by constructing d-1 edge-disjoint cycles each of length d/sup n/-1. A modification of the graph that allows it to admit a Hamiltonian cycle in the event of d-1 edge failures is also discussed.

[1] B. Alspach, J-C. Bermond, and D. Sotteau, "Decomposition into cycles I: Hamiltonian decompositions," inCycles and Rays, G. Hahn, G. Sabidussi, and R. E. Woodrow, Eds. Kluwer Academic, 1990, pp. 9-18.
[2] F. Annexstein, "Fault tolerance of hypercube-derivative networks," inProc. 1st Annu. ACM Symp. Parallel Algorithms Architectures, 1989, pp. 179-188.
[3] M. Atallah and U. Vishkin, "Finding Euler tours in parallel,"J. Syst. Sci., vol. 29, pp. 330-337, 1984.
[4] J-C. Bermond and C. Peyrat, "de Bruijn and Kautz networks: A competitor for the hypercube?," inHypercube and Distributed Computers, F. Andréand J. P. Verjus, Eds. Holland: Elsevier, 1989.
[5] J. Bruck, R. Cypher, and C-T. Ho, "Fault-tolerant de Bruijn and shuffle-exchange networks," IBM Tech. Rep. RJ 8547, Dec. 1991.
[6] O. Collins, F. Pollara, S. Dolinar, and R. McEliece, "VLSI decomposition of the de Bruijn graph," JPL Telecommunications and Data Acquisition Rep. 42-100, Feb. 1990, pp. 180-190.
[7] N. G. de Bruijn, "A combinatorial problem,"Proc. Koninklijke Nederlandsche Akademie van Wetenschappen, vol. 49, pp. 758-764, 1946.
[8] A.-H. Esfahanian and S. L. Hakimi, "Fault-tolerant routing in de Bruijn communications networks,"IEEE Trans. Comput., vol. C-34, pp. 777-788, Sept. 1985.
[9] H. Fredricksen, "A survey of full length nonlinear shift register cycle algorithms,"SIAM Review, vol. 24, pp. 195-221, 1982.
[10] R. Gould,Graph Theory. Menlo Park, CA: Benjamin/Cummings, 1988.
[11] F. Harary,Graph Theory. Reading, MA: Addison-Wesley, 1969.
[12] N. Homobono and C. Peyrat, "Fault tolerant routings in de Bruijn and Kautz networks,"Discrete Applied Mathematics, vol. 24, pp. 179-186, 1989.
[13] M. Imase, T. Soneoka, and K. Okada, "Connectivity of regular directed graphs with small diameters,"IEEE Trans. Comput., vol. C-34, pp. 267-273, Mar. 1985.
[14] M. Imase, T. Soneoka, and K. Okada, "Fault-tolerant processor interconnection networks,"Systems and Computers in Japan, vol. 17, pp. 21-30, 1986.
[15] A. Lempel, "On a homomorphism of the de Bruijn graph and its application to the design of feedback shift registers,"IEEE Trans. Comput., vol. C-19, pp. 439-442, Dec. 1970.
[16] R. J. McEliece,Finite Fields for Computer Scientists and Engineers. Boston, MA: KIuwer Academic, 1987.
[17] B. Obrenic, "Embedding de Bruijn and shuffle-exchange graphs in five pages," inProc. 3rd ACM Symp. Parallel Algorithms and Architectures, 1991, pp. 137-146.
[18] D. K. Pradhan, "Interconnection topologies for fault-tolerant parallel and distributed architectures," inProc. 10th Int. Conf. Parallel Processing, 1981, pp. 238-242.
[19] D. K. Pradhan and S. M. Reddy, "A fault-tolerant communication architecture for distributed systems,"IEEE Trans. Comput., vol. C-31, pp. 863-869, Sept. 1982.
[20] M. R. Samatham and D. K. Pradhan, "The de Bruijn multiprocessor network: A versatile parallel processing and sorting network for VLSI,"IEEE Trans. Comput., vol. C-38, pp. 567-581, Apr. 1989.
[21] M. R. Samatham and D. K. Pradhan, "Corrections to the de Bruijn multiprocessor network: A versatile parallel processing and sorting network for VLSI,"IEEE Trans. Comput., vol. C-40, pp. 122-123, Jan. 1991.
[22] M. L. Schlumberger, "DeBruijn communication networks," Ph.D. dissertation, Stanford Univ., Stanford, 1974.
[23] D. Barth, J. Bond, and A. Raspaud, "Compatible Eulerian circuits inKn**," Tech. Rep. 93-13, LaBRI-UniversitéBordeaux I, Bordeaux, France.
[24] R. Rowley and B. Bose, "On the number of disjoint Hamiltonian cycles in de Bruijn graphs," Tech. Rep. 93-80-09, Dept. of Comput. Sci., Oregon State Univ., 1993.
[25] R. Rowley and B. Bose, "A distributed algorithm for finding a fault-free cycle in a de Bruijn network," inProc. ISCA Int. Conf. Parallel and Distributed Computing Syst., 1993, pp. 263-266.

Index Terms:
fault tolerant computing; hypercube networks; fault-tolerant ring embedding; de Bruijn networks; multiprocessor network; multiple node (processor) failures; prime power; Hamiltonian cycle.
R.A. Rowley, B. Bose, "Fault-Tolerant Ring Embedding in de Bruijn Networks," IEEE Transactions on Computers, vol. 42, no. 12, pp. 1480-1486, Dec. 1993, doi:10.1109/12.260637
Usage of this product signifies your acceptance of the Terms of Use.