
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
J. Gotze, S. Paul, M. Sauer, "An Efficient JacobiLike Algorithm for Parallel Eigenvalue Computation," IEEE Transactions on Computers, vol. 42, no. 9, pp. 10581065, September, 1993.  
BibTex  x  
@article{ 10.1109/12.241595, author = {J. Gotze and S. Paul and M. Sauer}, title = {An Efficient JacobiLike Algorithm for Parallel Eigenvalue Computation}, journal ={IEEE Transactions on Computers}, volume = {42}, number = {9}, issn = {00189340}, year = {1993}, pages = {10581065}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.241595}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  An Efficient JacobiLike Algorithm for Parallel Eigenvalue Computation IS  9 SN  00189340 SP1058 EP1065 EPD  10581065 A1  J. Gotze, A1  S. Paul, A1  M. Sauer, PY  1993 KW  Jacobilike algorithm; parallel eigenvalue computation; symmetric eigenvalue problems; CORDIC processor; CORDIC angle sequence; Jacobi rotation; linear convergence; quadratic convergence; approximate rotations; digital signal processing; eigenvalue computation; fast implementations; matrix computation; scaling computation; convergence of numerical methods; eigenvalues and eigenfunctions; matrix algebra; parallel algorithms; signal processing. VL  42 JA  IEEE Transactions on Computers ER   
A very fast Jacobilike algorithm for the parallel solution of symmetric eigenvalue problems is proposed. It becomes possible by not focusing on the realization of the Jacobi rotation with a CORDIC processor, but by applying approximate rotations and adjusting them to single steps of the CORDIC algorithm, i.e., only one angle of the CORDIC angle sequence defines the Jacobi rotation in each step. This angle can be determined by some shift, add and compare operations. Although only linear convergence is obtained for the most simple version of the new algorithm, the overall operation count (shifts and adds) decreases dramatically. A slow increase of the number of involved CORDIC angles during the runtime retains quadratic convergence.
[1] R. P. Brent and F. T. Luk, "The solution of singular value and symmetric eigenvalue problems on multiprocessor arrays,"SIAM J. Sci. Statistic Comput.vol. 6, pp. 6984, 1985.
[2] J. R. Cavallaro and F. T. Luk, "CORDIC arithmetic for an SVD processor,"J. Parallel Distributed Comput., vol. 5, no. 3, pp. 271290, June 1988.
[3] J.P. Charlier, M. Vanbegin, and P. van Dooren, "On efficient implementations of Kogbetliantz's algorithm for computing the singular value decomposition,"Numer. Math., vol. 52, pp. 279300, 1988.
[4] A. A. J. de Lange, A. J. van der Hoeven, E. F. Deprettere, and J. Bu, "An optimal floating point pipeline CMOS CORDIC processor," inProc. 1988 Int. Symp. Circuits Syst., Helsinki, Finland, 1988, pp. 20432047.
[5] J.M. Delosme, "CORDIC algorithms: theory and extensions,"Proc. SPIE Advanced Algorithms and Architectures for Signal Processing IV, 1989, pp. 131145.
[6] J.M. Delosme, "Bitlevel systolic algorithms for real symmetric and hermitian eigenvalue problems,"J. VLSI Signal Processing, vol. 4, no. 1, pp. 6988, 1992.
[7] E. F. Deprettere, A. A. J. de Lange, and P. Dewilde, "The synthesis and implementation of signal processing applications specific VLSI CORDIC arrays," inProc. Int. Conf. Acoustics Speech and Signal Processing, 1990, pp. 974977.
[8] J. Duprat and J.M. Muller, "The CORDIC algorithm: new results for fast VLSI implementation," Tech. Rep. 9004, ENS de Lyon, 1990.
[9] G. E. Forsythe and P. Henrici, "The cyclic Jacobi method for computing the principal values of a complex matrix,"Trans. Amer. Math. Soc., vol. 94, pp. 123, 1960.
[10] J. Götze, "Parallel methods for iterative matrix decompositions," inProc. IEEE Int. Symp. on CAS, 1991, pp. 233236.
[11] J. Götze, "On the Parallel Implementation of Jacobi's and Kogbetliantz's algorithm," Res. Rep. RR859, Dept. of Comput. Sci., Yale Univ., New Haven, CT, Nov. 1991. (to appear inSIAM J. Sci. Stat. Comput.)
[12] G. H. Golub and C. van Loan,Matrix Computations. Baltimore, MD: The John Hopkins Univ. Press, 1989.
[13] J.A. Lee and T. Lang, "Constantfactor redundant CORDIC for angle calculation and rotation,"IEEE Trans. Comput., vol. 41, no. 8, pp. 10161025, Aug. 1992.
[14] F. T. Luk and H. Park, "On parallel Jacobi orderings,"SIAM J. Sci. Statist. Comput., vol. 1, pp. 1826, 1989.
[15] H. X. Lin and H. J. Sips, "Online CORDIC algorithms,"IEEE Trans. Comput., vol. 39, pp. 10381052, 1990.
[16] J. J. Modi and J. D. Pryce, "Efficient implementation of Jacobi's diagonalization method on the DAP,"Numer. Math., vol. 46, pp. 443454, 1985.
[17] N. Taklagi, T. Asada, and S. Yajmima, "Redundant CORDIC methods with a constant scale factor for sine and cosine computations,"IEEE Trans. Comput., vol. 40, no. 9, pp. 989995, Sept. 1991.
[18] J. D. Ullman, "Compututional Aspects of VLSI., New York: Comput. Sci. Press, 1984.
[19] J. E. Volder, "The CORDIC trigonometric computing technique,"IRE Trans. Electron. Comput., vol. EC8, pp. 330334, 1959.
[20] J. Walther, "A unified algorithm for elementary functions," inJoint Comput. Conf. Proc., 1971.
[21] J. H. Wilkinson, "Note on the quadratic convergence of the cyclic Jacobi process,"Numer. Math., vol. 6, pp. 296300, 1962.
[22] J. H. Wilkinson,The Algebraic Eigenvalue Problem. London, England: Oxford University Press, 1965.