This Article 
 Bibliographic References 
 Add to: 
Novel Totally Self-Checking Berger Code Checker Designs Based on Generalized Berger Code Partitioning
August 1993 (vol. 42 no. 8)
pp. 1020-1024

Totally self-checking (TSC) Berger code checker designs are presented. The generalized Berger check partitioning is derived. It is proven that a TSC Berger code checker can be constructed from a TSC m-out-of-n checker. For a TSC Berger code checker design, no two-output checker exists for information length 2/sup r-1/, for any positive nonzero r. The presented approach solves this open problem.

[1] J. M. Berger, "A note on an error detection code for asymmetric channels,"Inform. Contr., pp. 68-73, Mar. 1961.
[2] C. V. Freiman, "Optimal error detecting codes for asymmetric binary channels,"Inform. Contr., pp. 64-71, Mar. 1962.
[3] M. J. Ashjaee and S. M. Reddy, "Totally self-checking checkers for a class of separable codes," inProc. 12th Annu. Allerton Conf. Circuit and System Theory, Oct. 1974, pp. 238-242.
[4] M. J. Ashjaee, "Totally self-checking check circuits for separable codes," Ph.D. dissertation, Univ. Iowa, 1976.
[5] M. J. Ashjaee and S. M. Reddy, "On totally self-checking checkers for separable codes,"IEEE Trans. Comput., vol. C-26, no. 8, pp. 737-744, Aug. 1977.
[6] M. A. Marouf and D. A. Friedman, "Design of self-checking checkers for Berger codes," inProc. 8th Symp. Fault-Tolerant Comput., June 1978, pp. 179-184.
[7] S. J. Piestrak, "Design of fast self-testing checkers for a class of Berger codes,"IEEE Trans. Comput., vol. C-36, no. 5, pp. 629-634, May 1987.
[8] J.-Ch. Lo and S. Thanawastien, "The design of fast totally self-checking Berger code checkers," inDig. Papers 18th Int. FTC Symp., Tokyo, Japan, July 1988, pp. 226-231.
[9] S. J. Piestrak, "The minimal test set for sorting networks and the use of sorting networks in self-testing checkers for unordered codes," inDig. Papers 20th Int. Fault-Tolerant Comput. Symp., Newcastle upon Tyne, U.K., June 26-28, 1990, pp. 467-474.
[10] D. A. Anderson, "Design of self-checking digital networks using coding techniques," Coordinated Sci. Lab., Univ. Illinois, Urbana-Chanpaign, Rep. R-527, 1971.
[11] Y. Tamir and C. H. Sequin, "Design and applications of self-testing comparators implemented with MOS PEA's,"IEEE Trans Comput., vol. C-33, pp. 493-506, June 1984.
[12] A. M. Paschalis, D. Nikolos, and C. Halatsis, "Efficient modular design of TSC checkers forM-out-of-2Mcodes,"IEEE Trans. Comput., vol. 37, no. 3, pp. 301-309, Mar. 1988.
[13] D. A. Anderson and G. Metze, "Design of totally self-checking check circuits form-out-of-ncodes,"IEEE Trans. Comput., vol. C-22, no. 3, pp. 263-269, Mar. 1973.
[14] S. M. Reddy and J. R. Wilson, "Easily testable cellular realization for the (exactlyp)-out-of-nand (por more)-out-of-nlogic functions,"IEEE Trans. Comput., vol. C-23, no. 1, pp. 98-100, Jan. 1974.
[15] J. E. Smith, "The design of totally self-checking circuits for a class of unordered codes,"J. Des. Autom. Fault-Tolerant Comput., pp. 321-342, Oct. 1977.
[16] T.R.N. Rao and F. Fujawara,Error Control Codes for Computer Systems, Prentice Hall, 1989.
[17] J. C. Lo, S. Thanawastien, T. R. N. Rao, and M. Nicolaidis, "An SFS Berger check prediction ALU and its applications to self-checking processor designs,"IEEE Trans. Comput.-Aided Design, vol. 11, no. 4, pp. 525-540, Apr. 1992.

Index Terms:
totally self-checking Berger code checker designs; generalized Berger code partitioning; m-out-of-n checker; error correction codes; error detection codes.
T.R.N. Rao, G.L. Feng, M.S. Kolluru, J.C. Lo, "Novel Totally Self-Checking Berger Code Checker Designs Based on Generalized Berger Code Partitioning," IEEE Transactions on Computers, vol. 42, no. 8, pp. 1020-1024, Aug. 1993, doi:10.1109/12.238498
Usage of this product signifies your acceptance of the Terms of Use.