This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On Computing Multiplicative Inverses in GF(2/sup m/)
August 1993 (vol. 42 no. 8)
pp. 1010-1015

The design of a modular standard basis inversion for Galois fields GF(2/sup m/) based on Euclid's algorithm for computing the greatest common divisor of two polynomials is presented. The asymptotic complexity is linear with m both in computation time and area requirement, thus resulting in an AT-complexity of O(m/sup 2/). This is a significant improvement over the best previous proposal which achieves AT-complexity of only O(m/sup 3/).

[1] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting Codes. New York: North-Holland, 1977.
[2] R. E. Blahut,Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983.
[3] W. Diffie and M. Hellman, "New directions in cryptography,"IEEE Trans. Inform. Theory, vol. IT-22, pp. 644-654, 1976.
[4] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone, "An implemententation for a fast public-key cryptosystem,"J. Cryptol., vol. 3, pp. 63-79, 1991.
[5] I. S. Hsu, T. K. Truong, L. J. Deutsch, and I. S. Reed, "A comparison of VLSI architecture of finite field multipliers using dual, normal, or standard bases,"IEEE Trans. Comput., vol. 37, no. 6, pp. 735-739, June 1988.
[6] M. Morii and Y. Takamatsu, "Exponentiation in finite fields using dual basis multiplier," inApplied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-8). Berlin, Germany: Springer-Verlag, 1990, pp. 354-366.
[7] C.-L. Wang and J.-L. Lin, "Systolic array implementation of multipliers for finite fields GF(2m),"IEEE Trans. Circuits Syst., vol. 38, no. 7, pp. 796-800, July 1988.
[8] L. B. Vries, K. A. Imink, J. G. Nibor, H. Hoeve, T. Doi, K. Okada, and H. Ogawa, "The compact disc digital audio system--modulation and error correction," inProc. Sixty-Seventh AES Convention, Oct. 1980.
[9] T. Itoh. "A fast algorithm for computing multiplicative inverses in GF(2m),"Inform. Comp., vol. 78, pp. 171-177, Sept. 1988.
[10] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed, "VLSI architecture for computing multiplications and inverses in GF(2m),"IEEE Trans. Comput., vol. C-34, pp. 709-716, Aug. 1985.
[11] G. L. Feng, "A VLSI architecture for fast inversion in GF(2m),"IEEE Trans. Comput., vol. 38, no. 10, pp. 1383-1386, Oct. 1989.
[12] K. Araki, I. Fujita, and M. Morisue, "Fast inverters over finite field based on Euclid's algorithm,"Trans. IEICE, vol. E-72, no. 11, pp. 1230-1234, Nov. 1989.
[13] R. P. Brent and H. T. Kung, "Systolic VLSI arrays for polynomial GCD computation,"IEEE Trans. Comput., vol. C-33, no. 8, pp. 731-736, Aug. 1984.

Index Terms:
computing multiplicative inverses; modular standard basis inversion; Galois fields; Euclid's algorithm; greatest common divisor; polynomials; asymptotic complexity; computation time; area requirement; AT-complexity; digital arithmetic.
Citation:
H. Brunner, A. Curiger, M. Hofstetter, "On Computing Multiplicative Inverses in GF(2/sup m/)," IEEE Transactions on Computers, vol. 42, no. 8, pp. 1010-1015, Aug. 1993, doi:10.1109/12.238496
Usage of this product signifies your acceptance of the Terms of Use.