This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Generalized Hopfield Neural Network for Concurrent Testing
August 1993 (vol. 42 no. 8)
pp. 898-912

The use of generalized Hopfield neural networks in designing the checking circuitry of a concurrent testable circuit is discussed. The aliasing probability, a measure for evaluating the performance of the checking circuitry, is provided. It is shown how, by using spectral techniques based on the Reed-Muller transform, the aliasing probability can be expressed as a function of the Reed-Muller coefficients. Therefore, obtaining the checking circuitry means selecting a set of Reed-Muller spectral coefficients, with fewer elements than a given bound, that minimizes the aliasing probability. To apply the neural networks to design the checking circuitry for concurrent testing, the aliasing probability has been used as an energy function, and the Hopfield neural network has been modified to have an associated energy function with any type of polynomial dependence on the processor states.

[1] J. J. Hopfield and D. W. Tank, "Neural computation of decisions in optimization problems,"Biol. Cybern., vol. 52, p. 141, 1985.
[2] P. Lala,Fault-tolerant and fault testable hardware design. Englewood Cliffs, NJ, Prentice-Hall, 1985.
[3] E. J. McCluskey, "Built-in self-test techniques,"IEEE Design&Test, pp. 21-36, Apr. 1985.
[4] E. J. McCluskey, "Built-in self-test structures,"IEEE Design&Test, pp. 29-36, Apr. 1985.
[5] J. A. Abraham and W. K. Fuchs, "Fault and error models for VLSI,"Proc. IEEE, vol. 74, no. 5, pp. 639-654, May 1986.
[6] W. K. Fuchs, C.-Y. R. Chen, and J. A. Abraham, "Concurrent error detection in highly structured logic arrays,"IEEE J. Solid-State Circuits, vol. SC-22, no. 4, pp. 583-593, Aug. 1987.
[7] E. Fujiwara, N. Mutoh, and K. Matsuoka, "A self-testing group-parity prediction checker and its use for built-in testing,"IEEE Trans. Comput., vol. C-33, no. 6, pp. 578-583, June 1984.
[8] E. Fujiwara and K. Matsuoka, "A self-checking generalized prediction checker and its use for built-in testing,"IEEE Trans. Comput., vol. C-36, no. 1, pp. 86-93, Jan. 1987.
[9] J. Khakbaz and E. J. McCluskey, "Concurrent error detection and testing for large PLAs,"IEEE J. Solid-State Circuits, vol. SC-17, no. 2, Apr. 1982.
[10] K. K. Saluja, R. Sharmaa, andC. R. Kime, "A concurrent testing technique for digital circuits,"IEEE Trans. Computer-Aided Design, vol. 7, no. 12, pp. 1250-1259, Dec. 1988.
[11] I. L. Sayers, D. J. Kinniment, and E. G. Chester, "Design of a reliable and self-testing VLSI datapath using residue coding techniques,"IEE Proc., vol. 133, pt. E, no. 3, pp. 169-179, May 1986.
[12] K. G. Shin and Y.-H. Lee, "Error detection process-model, design, and its impact on computer performance,"IEEE Trans. Comput., vol. C-33, no. 6, pp. 529-540, June 1984.
[13] J. Bechta and K. S. Trivedi, "Coverage modeling for dependability analysis of fault-tolerant systems,"IEEE Trans. Comput., vol. 38, no. 6, pp. 775-787, June 1989.
[14] D. M. Blough and G. M. Masson, "Performance analysis of a generalized concurrent error detection procedure,"IEEE Trans. Comput., vol. 39, no. 1, pp. 47-62, Jan. 1990.
[15] A. Avizienis, "The four-universe information system model for the study of fault-tolerance," inProc. Fault-Tolerant Computing Symp., pp. 6-13, 1982.
[16] M. Berg and I. Koren, "On switching policies for modular redundancy fault-tolerant computing systems,"IEEE Trans. Comput., vol. C-36, no. 9, pp. 1052-1062, Sept. 1987.
[17] I. Koren and D. K. Pradhan, "Yield and performance enhancement through redundancy in VLSI and WSI multiprocessor systems,"Proc. IEEE, vol. 74, no. 5, pp. 699-711, May 1986.
[18] B. Bose and T. R. N. Rao, "Theory of unidirectional error correcting detecting codes,"IEEE Trans. Comput., vol. C-31, no. 6, pp. 521-530, June 1982.
[19] B. Bose and D. J. Lin, "PLA implementation of k-out-of-n code TSC checker,"IEEE Trans. Comput., vol. C-33, no. 6, pp. 583-588, June 1984.
[20] S. L. Wang and A. Avizienis, "The design of totally self checking circuits using programmable logic arrays," inProc. Int. Symp. FTCS, 1979, pp. 173-180.
[21] J. Khakbaz, "A testable PLA design with low overhead and high fault coverage,"IEEE Trans. Comput., vol. C-33, no. 8, pp. 743-753, Aug. 1984.
[22] J. Khakbaz and E. J. McCluskey, "Self-testing embedded parity checkers,"IEEE Trans. Comput., vol. C-33, no. 8, pp. 753-756, Aug. 1984.
[23] I. D. Elliot and I. L. Sayers, "Implementation of 32-bit RISC processor incorporating hardware concurrent error detection and correction,"IEE Proc., vol. 137, pt. E, no. 1, Jan. 1990.
[24] J. L. A. Hughes, E. J. McCluskey, and D. J. Lu, "Design of totally self-checking comparators with an arbitrary number of inputs,"IEEE Trans. Comput., vol. C-33, no. 6, pp. 546-550, June 1984.
[25] D. C. Ko and M. A. Breuer, "Self-checking of multi-output combinational circuits using extended-parity techniques,"J. Design Automat. Fault-Tolerant Comput., vol. 2, pp. 29-62, Jan. 1978.
[26] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.
[27] J. Ortega, A. Lloris, A. Prieto, and F. J. Pelayo, "Using Reed-Muller coefficients to synthesize optimal prediction modules for concurrent testing,"Electronics Letters, vol. 27, no. 14, pp. 1243-1245, July 1991.
[28] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities,"Proc. National Academy of Sciences, USA, vol. 79, pp. 2554-2558, 1982.
[29] B. Müller and J. Reinhart,Neural Networks. An Introduction. Berlin: Springer-Verlag, 1990, pp. 104-112.
[30] B. W. Lee and B. J. Sheu, "Modified Hopfield neural networks for retrieving the optimal solution,"IEEE Trans. Neural Networks, vol. 2, no. 1, pp. 137-142, Jan. 1991.
[31] B. W. Lee and B. J. Sheu, "Hardware annealing in electronic neural networks,"IEEE Trans. Circuits and Systems, vol. 38, no. 1, pp. 134-137, Jan. 1991.
[32] A. G. Tsikuris, G. V. Reklaitis, and M. F. Tenorio, "Nonlinear optimization using generalized Hopfield networks,"Neural Computation, vol. 1, no. 4, 1989.
[33] D. K. Pradhan, K. G. Sandeep, and M. G. Karpovsky, "Aliasing probability for multiple input signature analyzer,"IEEE Trans. Computers, vol. C-39, no. 4, pp. 586-591, Apr. 1990.
[34] T. R. Damarla and M. Karpovsky, "Fault detection in combinational networks by Reed-Muller transforms,"IEEE Trans. Comput., vol. 38, no. 6, pp. 788-797, June 1989.
[35] J. Ortega, "Test de circuitos digitales mediante técnicas espectrales basadas en una nueva transformada," Ph.D. dissertation, University of Granada, Spain, 1990.
[36] A. Lloris, J. Ortega, and A. Prieto, "The fast Tamari transform,IEE Proc.-E., vol. 138, no. 3, pp. 147-153, May 1991.
[37] O. H. Ibarra and S. K. Sahni, "Polynomially complete fault detection problems,IEEE Trans. Comput., vol. C-24, no. 3, pp. 242-249, Mar. 1975.
[38] H. Fujiwara and S. Toida, "The complexity of fault problems for combinational logic circuits,"IEEE Trans. Comput., vol. C-31, no. 6, pp. 555-560, June 1982.
[39] H. Fujiwara, "Computational complexity of controlability observability problems for combinational circuits,"IEEE Trans. Comput., vol. 39, no. 6, pp. 762-767, June 1990.
[40] J. J. Hopfield, "Neurons with graded response have collective computational properties like those of two-state neurons,"Proc. National Academy of Sciences, vol. 81, pp. 3088-3092, 1984.
[41] S. Dey, F. Brglez, and G. Kedem, "Circuit partitioning for logic synthesis,"IEEE J. Solid-State Circuits, vol. SC-26, no. 3, pp. 350-363, Mar. 1991.
[42] H. Cho, G. Hatchel, M. Nash, and L. Setiono, "BEAT NP: A tool for partitioning Boolean networks," inProc. IEEE Int. Conf. CAD, Nov. 1988, pp. 98-101.
[43] E. J. McCluskey and S. Bozorgui-Nesbat, "Design for autonomous test,"IEEE Trans. Circuits Syst., vol. CAS-28, pp. 1070-1079, Nov. 1981.

Index Terms:
generalised Hopfield neural network; performance evaluation; concurrent testing; checking circuitry; concurrent testable circuit; aliasing probability; spectral techniques; Reed-Muller transform; energy function; associated energy function; polynomial dependence; combinatorial circuits; fault tolerant computing; Hopfield neural nets; logic testing.
Citation:
J. Ortega, A. Prieto, A. Lloris, F.J. Pelayo, "Generalized Hopfield Neural Network for Concurrent Testing," IEEE Transactions on Computers, vol. 42, no. 8, pp. 898-912, Aug. 1993, doi:10.1109/12.238481
Usage of this product signifies your acceptance of the Terms of Use.