This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A New Class of Optimal Bounded-Degree VLSI Sorting Networks
June 1993 (vol. 42 no. 6)
pp. 746-752

Minimum-area very large scale integration (VLSI) networks have been proposed for sorting N elements in O(log,N) time. However, most of such networks proposed have complex structures, and no explicit network construction is given in others. New designs of optimal VLSI sorters that combine rotate-sort with enumeration-sort to sort N numbers, each of length w (1+ in )logN bits (for any constant in <0), in time T in ( Omega (logN), Theta square root (NlogN)). The main attributes of the proposed sorters are a significantly smaller number of sorting nodes than in previous designs and smaller constant factors in their time complexity. The proposed sorters use a new class of reduced-area K-shuffle layouts to route data between sorting stages. These layouts can be also used to provide explicit designs for the column-sort technique developed by F.T. Leighton (1985).

[1] C. D. Thompson, "Area-time complexity for VLSI," inProc. Eleventh Annu. ACM Symp. Theory Comput., 1979, pp. 81-88.
[2] C. D. Thompson, "The VLSI complexity of sorting,"IEEE Trans. Comput., vol. C-32, no. 12, Dec. 1983.
[3] T. Leighton, "Tight bounds on the complexity of parallel sorting,"IEEE Trans. Comput., vol. C-34, no. 4, pp. 344-354, Apr. 1985.
[4] G. Bilardi, "The area-time complexity of sorting," Ph.D. dissertation, Comput. Sci. Dept., Univ. of Illinois, Urbana-Champaign, 1984.
[5] G. Bilardi and F. P. Preparata, "Area-time lower bound techniques with applications to sorting,"Algorithmica, vol. 1, no. 1, pp. 65-91, 1986.
[6] A. R. Seigel, "Minimum storage sorting circuits,"IEEE Trans. Comput., vol. C-34, no. 4, pp. 355-361, 1985.
[7] A. R. Seigel, "Aspects of information flow in VLSI circuits," inProc. 18th Annu. ACM Symp. Theory Comput., pp. 448-459, 1986.
[8] J. Ullman,Computational Aspects of VLSI. Computer Science Press, 1984.
[9] J. M. Marberg and E. Gafni, "Sorting in a constant number of row and column phases on a mesh,"Algorithmica, vol. 3, pp. 561-572, 1988.
[10] D. E. Muller and F. P. Preparata, "Bounds to complexities of networks for sorting and switching,"J. ACM, vol. 22, no. 2, Apr. 1975.
[11] G. Bilardi and F. P. Preparata, "A minimum area VLSI network forO(logn) time sorting,"IEEE Trans. Comput., vol. C-34, no. 4, Apr. 1985.
[12] R. Cole and A. R. Seigel, "Optimal VLSI circuits for sorting,"J. Assoc. Comput. Mach., vol. 35, no. 4, pp. 777-809, 1988.
[13] F. T. Leighton, "New lower bound techniques for VLSI,"Math. Syst. Theory, vol. 17, pp. 47-50, 1984.
[14] H. M. Alnuweiri, "Routing BPC permutations in VLSI," inProc. Int. Parallel Processing Symp.(Los Angeles, CA), 1992.
[15] H. M. Alnuweiri, S. M. Sait, and M. Darwish, "Efficient routing of a class of permutations in VLSI," inProc. Brown/MIT Conf. Advanced Res. VLSI(Providence, RI), Mar. 1992, pp. 349-365.
[16] M. Ajtai, J. Komlos, and E. Szemeredi, "AnO(nlogn) sorting network,"Combinatorica, vol. 3, pp. 1-19, 1983.
[17] G. Bilardi and F. P. Preparata, "The VLSI optimality of the AKS sorting network,"Inform. Processing Lett., 1985.
[18] M. Paterson, "Improved sorting networks withO(logN) depth,"Algorithmica, vol. 5, no. 1, pp. 75-92, 1990.
[19] Y. Han and Y. Igarashi, "Time lower bounds for sorting on multi-dimensional mesh-connected computers," inProc. Int. Conf. Parallel Processing, pp. 194-197, 1988.
[20] I. D. Scherson and S. Sen, "Parallel sorting on two dimensional VLSI models of computation,"IEEE Trans. Comput., vol. 38, pp. 238-249, Feb. 1989.
[21] D. D. Nath, S. N. Maheshwari, and P. C. P. Bhatt, "Efficient VLSI networks for parallel processing based on orthogonal trees,"IEEE Trans. Comput., vol. C-32, no. 6, June 1983.
[22] H. M. Alnuweiri, "A new class of optimal VLSI sorters," Univ. British Columbia, Vancouver, B.C., Tech. Rep. CICSR-TR92-005, 1992.
[23] H. M. Alnuweiri, "Optimal bounded-degree VLSI networks for sorting in a constant-number of rounds," inProc. Supercomput. '91 Conf.(Albuquerque, NM), Nov. 1991, pp. 732-739.

Index Terms:
bounded-degree; VLSI sorting networks; optimal VLSI sorters; rotate-sort; enumeration-sort; time complexity; reduced-area; K-shuffle layouts; logic design; optimisation; sorting; VLSI.
Citation:
H.W. Alnuweiri, "A New Class of Optimal Bounded-Degree VLSI Sorting Networks," IEEE Transactions on Computers, vol. 42, no. 6, pp. 746-752, June 1993, doi:10.1109/12.277299
Usage of this product signifies your acceptance of the Terms of Use.