
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
S.J. Piestrak, "The Minimal Test Set for Multioutput Threshold Circuits Implemented as Sorting Networks," IEEE Transactions on Computers, vol. 42, no. 6, pp. 700712, June, 1993.  
BibTex  x  
@article{ 10.1109/12.277288, author = {S.J. Piestrak}, title = {The Minimal Test Set for Multioutput Threshold Circuits Implemented as Sorting Networks}, journal ={IEEE Transactions on Computers}, volume = {42}, number = {6}, issn = {00189340}, year = {1993}, pages = {700712}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.277288}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  The Minimal Test Set for Multioutput Threshold Circuits Implemented as Sorting Networks IS  6 SN  00189340 SP700 EP712 EPD  700712 A1  S.J. Piestrak, PY  1993 KW  minimal test set; multioutput threshold circuits; sorting networks; ninput; symmetric threshold functions; Boolean functions; threshold circuit; unidirectional error detecting codes; Boolean functions; logic circuits; logic testing; threshold logic. VL  42 JA  IEEE Transactions on Computers ER   
It is shown that an ninput sorting network (SN) can be used to implement an nvariable symmetric threshold functions using the least amount of hardware. An algorithm to derive Boolean functions implemented on any line of any ninput threshold circuit T/sup n/ implemented as a SN is given. A heuristic procedure for generating the minimal test set for any threshold circuit T/sup n/ implemented as a Batcher's SN or any other SN is presented. The number of tests required to detect all stuckat faults in an ninput SN is determined. A highly regular structure using only one type of simple cell and a suitability for lowlevel pipelining are other advantages of the circuit T/sup n/. The circuit T/sup n/ can be used as a basic building block of various circuitry supporting the use of all known unidirectional error detecting codes.
[1] R. C. Bose and R. J. Nelson, "A sorting problem,"J. ACM, vol. 9, pp. 282296, Apr. 1962.
[2] K. E. Batcher, "Sorting networks and their applications," inProc. 1968 SJCC, AFIPS, vol. 32, 1968, pp. 307314.
[3] M. W. Green, "Some improvements in nonadaptive sorting algorithms," inProc. 6th Princeton Conf. Inform. Sci. and Syst., 1972, pp. 387391.
[4] D. E. Knuth,The Art of Computer Programming, Vol. 3, Reading, MA: AddisonWesley, 1973.
[5] R. W. Floyd and D. E. Knuth, "The BoseNelson sorting problem," inA Survey of Combinatorial Theory, J. N. Shrivastavaet al., Eds. Amsterdam: NorthHolland, 1973, ch. 15, pp. 163172.
[6] R. L. (Scot) Drysdale and F. H. Young, "Improved divide/sort/merge sorting networks,"SIAM J. Comput., vol. 4, pp. 264270, Sept. 1975.
[7] D. C. Van Voorhis, "An economical construction for sorting networks," inProc. AFIPS NCC, 1974, pp. 921927.
[8] E. A. Lamagna, "The complexity of monotone networks for certain bilinear forms, routing problems, sorting, and merging,"IEEE Trans. Comput., vol. C28, pp. 773782, Oct. 1979.
[9] S. L. Hurst, "Digitalsummation thresholdlogic gates: A new circuit element,"Proc. IEE, vol. 120, no. 11, pp. 13011307, 1973.
[10] S. M. Reddy and J. R. Wilson, "Easily testable cellular realizations for the (exactlyp)outofnand (por more)outofnlogic functions,"IEEE Trans. Comput., vol. C23, pp. 98100, Jan. 1974.
[11] C. R. Edwards, "Some improved designs for the digital summation threshold logic (DSTL) gate,"Comput. J., vol. 21, no. 1, pp. 7378, 1978.
[12] S. L. Hurst, "Application of multioutput thresholdlogic gates to digitalnetwork design,"Proc. IEE, vol. 123, no. 2, pp. 128134, 1976.
[13] A. Pal, "Logic design using digital summation thresholdlogic gates,"IEE Proc., vol. 130, pt. E, pp. 3236, Jan. 1983.
[14] S. J. Piestrak, "The minimal test set for sorting networks and the use of sorting networks in selftesting checkers for unordered codes," inDig. Papers 20th Int. FaultTolerant Comput. Symp., Newcastle upon Tyne, U.K., June 2628, 1990, pp. 467474.
[15] S. J. Piestrak, "Efficient encoding/decoding circuitry for systematic unidirectional errordetecting codes," inProc. 5th Int. Conf. FaultTolerant Comput. Syst., Nürnberg, FRG, SpringerVerlag, Sept. 2527, 1991, pp. 181193.
[16] S. J. Piestrak, "Design of a selftesting checker for Borden code," inProc. ICCD'91, Int. Conf. Computer Design: VLSI in Comput., Cambridge, MA, Oct. 1416, 1991, pp. 582585.
[17] D. A. Anderson and G. Metze, "Design of totally selfchecking check circuits formoutofncodes,"IEEE Trans. Comput., vol. C22, pp. 263269, Mar. 1973.
[18] S. M. Reddy, "A note on selfchecking checkers,"IEEE Trans. Comput., vol. C23, pp. 11001102, Oct. 1974.
[19] M. A. Marouf and A. D. Friedman, "Efficient design of selfchecking checker for anymoutofncode,"IEEE Trans. Comput., vol. C27, pp. 482490, June 1978.
[20] N. Gaitanis and C. Halatsis, "A new design method formoutofncheckers,"IEEE Trans. Comput., vol. C32, pp. 273283, Mar. 1983.
[21] S. J. Piestrak, "Design method of totally selfchecking checkers form outofncodes," inDig. Papers 13th Int. FTC Symp., Milan, Italy, June 2830, 1983, pp. 162168.
[22] J.Ch. Lo and S. Thanawastien, "The design of fast totally selfchecking Berger code checkers," inDig. Papers 18th Int. FTC Symp., Tokyo, Japan, July 1988, pp. 226231.