This Article 
 Bibliographic References 
 Add to: 
Time-Division Optical Communications in Multiprocessor Arrays
May 1993 (vol. 42 no. 5)
pp. 577-590

An optical communication structure is proposed for multiprocessor arrays which exploits the high communication bandwidth of optical waveguides. The structure takes advantage of two properties of optical signal transmissions on waveguides, namely, unidirectional propagation and predictable propagation delays per unit length. Because of these two properties, time-division multiplexing (TDM) of messages has the same effect as message pipelining on optical waveguides. Two TDM approaches are proposed, and the combination of the two is used in the design of the optical communication structure. Analysis and simulation results are given to demonstrate the communication effectiveness of the system. A clock distribution method is proposed to address potential synchronization problems. Feasibility issues with current and future technologies are discussed.

[1] R. Alferness, L. Buhl, S. Korotky, and R. Tucker, "High-speedΔβ-reversal directional coupler switch," inTop. Meeting Photon. Switching, Tech. Dig. Series, vol. 13, 1987, pp. 77-78.
[2] A. Benner, H. Jordan, and V. Heuring, "Optically switched lithium niobate directional couplers for digital optical computing,"SPIE Proc., Digital Optical Computing II, vol. 1215, pp. 343-352, 1990.
[3] K. Brenner, A. Huang, and N. Streibl, "Digital optical computing with symbolic substitution,"Appl. Opt., vol. 25, p. 3054, 1986.
[4] D. Chiarulli, R. Melhem, and S. Levitan, "Using coincident optical pulses for parallel memory addressing,"IEEE Comput. Mag., vol. 20, no. 12, pp. 48-58, 1987.
[5] D. Chiarulli, R. Ditmore, R. Melhem, and S. Levitan, "An all optical addressing circuit: Experimental results and scalability analysis,"J. Lightwave Technol., vol. 9, no. 12, pp. 1717-1725, Dec. 1991.
[6] J. Cohen,The Single Server Queues. Amsterdam, The Netherlands: North Holland, 1969.
[7] A. Dickinson and M. Prise, "Free-space optical interconnection scheme," inTop. Meeting Photon. Switch, Salt Lake City, UT, Feb. 1989.
[8] P. Dowd, "High performance interprocessor communication through optical wavelength division multiple access channels," inProc. 18th Int. Symp. Comput. Architecture, May 1991, pp. 96-105.
[9] M. Feldman, S. Esener, C. Guest, and S. Lee, "Comparison between optical and electrical interconnects based on power and speed considerations,"Appl. Opt., vol. 27, pp. 1742-1751, 1988.
[10] M. Fine and F. Tobagi, "Demand assignment multiple access schemes in broadcast bus local area networks,"IEEE Trans. Comput., vol. C-33, no. 12, pp. 1130-1159, Dec. 1984.
[11] J. Goodman, F. Leonberger, S. Kung, and R. Athale, "Optical interconnections for VLSI systems,"Proc. IEEE, vol. 72, pp. 850-866, 1984.
[12] Z. Guo, R. Melhem, R. Hall, D. Chiarulli, and S. Levitan, "Array processors with pipelined optical busses,"J. Parallel Distributed Comput., vol. 12, no. 3, pp. 269-282, 1991.
[13] K. Huang and J. Pier, "A study of 3-D optical multistage interconnection networks,"SPIE Proc. Digital Opt. Comput. II, vol. 1215, pp. 143-154, 1990.
[14] J. Jahns and M. Murdocca, "Crossover networks and their optical implementation,"Appl. Opt., vol. 27, pp. 3155-3160, 1988.
[15] L. Kleinrock,Queueing Systems, Vol. 1: Theory. New York: Wiley, 1975.
[16] H. Kobayashi and A. G. Konheim, "Queueing models for computer communications system analysis,"IEEE Trans. Commun., vol. COM-25, pp. 2-29, 1977.
[17] A. Konheim, "Chaining in a loop system,"IEEE Trans. Commun., vol. COM-24, no. 2, pp. 203-210, Feb. 1976.
[18] S. Levitan, D. Chiarulli, and R. Melhem, "Coincident pulse techniques for multiprocessor interconnection structures,"Appl. Opt., vol. 29, no. 14, pp. 2024-2039, 1990.
[19] J. Little, "A proof for the queueing formula:L=λ,"Oper. Res., vol. 9, no. 4, pp. 204-209, July 1961.
[20] N. F. Maxemchuk, "Twelve random access strategies for fiber-optic networks,"IEEE Trans. Commun., vol. 36, pp. 942-950, Aug. 1988.
[21] R. Melhem, D. Chiarulli, and S. Levitan, "Space multiplexing of waveguides in optically interconnected multiprocessor systems,"Comput. J., vol. 32, no. 4, pp. 362-369, 1989.
[22] R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed packet switching for local computer networks,"Commun. ACM, vol. 19, no. 7, pp. 395-404, 1976.
[23] M. Nassehi, F. Tobagi, and M. Marhic, "Fiber optic configurations for local area networks,"IEEE J. Select. Areas Commun., vol. SAC-3, no. 6, pp. 941-949, Nov. 1985.
[24] Y. Ofek, "The topology, algorithms, and analysis of a synchronous optical hypergraph architecture," Ph.D. dissertation, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 1989.
[25] K. Padmanabhan and A. Netravali, "Dilated networks for photonic switching,"IEEE Trans. Commun., vol. 35, pp. 1357-1365, Dec. 1987.
[26] P. Perrier, P. Prucnal, and M. Chbat, "Demonstration of a self-clocked optical time-slot interchanger,"OSA Proc. Photon. Switching, vol. 3, pp. 219-225, Mar. 1989.
[27] C. Qiao and R. Melhem, "Reconfiguration with time-division multiplexed MINs for multiprocessor communications," Tech. Rep. 91-20, Comput. Sci. Dep. Univ. Pittsburgh, Sept. 1991.
[28] C. Qiao, R. Melhem, D. Chiarulli, and S. Levitan, "Optical multicasting in linear arrays,"Int. J. Opt. Comput., vol. 2, pp. 31-48, 1991.
[29] S. Ramanan and H. Jordan, "Serial array shuffle-exchange architecture for universal permutation of time slots,"SPIE Proc., Digital Opt. Comput. II, vol. 1215, pp. 330-342, Jan. 1990.
[30] D. Sarrazin, H. Jordan, and V. Heuring, "Digital fiber optical delay line memory,"Digital Opt. Comput. II, SPIE, vol. 1215, pp. 366-375, Jan. 1990.
[31] J. Sauer, "A multi-Gb/s optical interconnect,"SPIE Proc., Digital Opt. Comput. II, vol. 1215, pp. 198-207, 1990.
[32] F. Stone, J. Watson, D. Moser, and W. Minford, "Performance and yield of pilot-line quantities of lithium niobate switches," inSPIE Conf. Proc. OE/Fibers '89, Boston, MA, Sept. 1989.
[33] H. Takagi,Analysis of Polling Systems. Cambridge, MA: M.I.T. Press, 1986.
[34] R. A. Thompson and P. P. Giordano, "An experimental photonic time-slot interchanger using optical fibers as reentrant delay-line memories,"J. Lightwave Technol., vol. 5, pp. 154-162, Jan. 1987.
[35] R. Thompson, R. Anderson, J. Camlet, and P. Giordano, "Experimental modular switching system with a time-multiplexed photonic center stage,"OSA Proc. Photon. Switching, vol. 3, pp. 212-218, 1989.
[36] R. Thompson, "Photonic time-multiplexed permutation switching using the dilated slipped banyan network,"J. Lightwave Technol., vol. 9, no. 12, pp. 1780-1787, Dec. 1991.
[37] F. A. Tobagi, F. Borgonovo, and L. Fratta, "EXPRESS-NET: A high performance integrated services local area network,"IEEE J. Select. Areas Commun., vol. SAC-1, no. 5, pp. 898-913, Nov. 1983.
[38] D. Z. Tsang, "One-gigabit per second free-space optical interconnection,"Appl. Opt., vol. 29, pp. 2034-2037, 1990.
[39] N. Whitehead and N. Parsons,OSA Proc. Photon. Switching, vol. 3, pp. 257-259, Mar 1989.

Index Terms:
optical communication structure; multiprocessor arrays; high communication bandwidth; optical waveguides; optical signal transmissions; unidirectional propagation; predictable propagation delays; time-division multiplexing; message pipelining; TDM approaches; simulation results; communication effectiveness; clock distribution method; potential synchronization problems; multiprocessing systems; optical communication; optical information processing; optical waveguides; time division multiplexing.
C. Qiao, R.G. Melhem, "Time-Division Optical Communications in Multiprocessor Arrays," IEEE Transactions on Computers, vol. 42, no. 5, pp. 577-590, May 1993, doi:10.1109/12.223677
Usage of this product signifies your acceptance of the Terms of Use.