
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
T.A. Varvarigou, V.P. Roychowdhury, T. Kailth, "A Polynomial Time Algorithm for Reconfiguring MultipleTrack Models," IEEE Transactions on Computers, vol. 42, no. 4, pp. 385395, April, 1993.  
BibTex  x  
@article{ 10.1109/12.214686, author = {T.A. Varvarigou and V.P. Roychowdhury and T. Kailth}, title = {A Polynomial Time Algorithm for Reconfiguring MultipleTrack Models}, journal ={IEEE Transactions on Computers}, volume = {42}, number = {4}, issn = {00189340}, year = {1993}, pages = {385395}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.214686}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Polynomial Time Algorithm for Reconfiguring MultipleTrack Models IS  4 SN  00189340 SP385 EP395 EPD  385395 A1  T.A. Varvarigou, A1  V.P. Roychowdhury, A1  T. Kailth, PY  1993 KW  polynomial time algorithm; reconfiguring multipletrack models; combinatorial problem; m1/2trackmspare model; twodimensional grid; noninteracting straight lines; time complexity; faulty processors; computational complexity; fault tolerant computing; parallel algorithms; parallel architectures; reconfigurable architectures. VL  42 JA  IEEE Transactions on Computers ER   
A polynomial time algorithm for solving the combinatorial problem that underlies the reconfiguration issues in the m1/2trackmspare model, for any arbitrary m, is discussed. The following combinatorial problem is solved: Given a set of points in a twodimensional grid, find a set of noninteracting straight lines such that every line starts at a point and connects to one of the boundaries of the grid, there are no more than m lines overlapping in any row or column of the grid, and there are no nearmiss situations. The time complexity of the algorithm is shown to be O(m mod F mod /sup 2/), where mod F is the number of faulty processors.
[1] Y. Birk and J. B. Lotspiech, "On finding nonintersecting straightline interconnections of grid points to the boundary," Tech. rep., Tech. Rep. RJ 7217 (67984), IBM, Almaden Research Center, San Jose, CA, Dec. 1989.
[2] J. Bruck and V. Roychowdhury, "How to play bowling in parallel on the grid?" Tech. rep., Tech. Rep. RJ 7209 (67688), IBM, Almaden Research Center, San Jose, CA, Dec. 1989.
[3] M. Chean and J. A. B. Fortes, "The fulluseofsuitablespares (fuss) approach to hardware reconfiguration for faulttolerant processor arrays,"IEEE Trans. Comput., vol. 39, pp. 564571, Apr. 1990.
[4] J. S. N. Jean, "Faulttolerant array processors using nandhalftrack switches," inProc. Int. Conf. Appl. Specific Array Processors, Sept. 1990.
[5] J. S. N. Jean, H. C. Fu, and S. Y. Kung, "Yield enhancement for WSI array processors using twoandhalftrack switches," inProc. Int. Conf. WaferScale Integration, San Francsco, CA, Jan. 1990, pp. 243250.
[6] S. Y. Kung, S. N. Jean, and C. W. Chang, "Faulttolerant array processors using singletrack switches,"IEEE Trans. Comput., vol. 38, no. 4, pp. 501514, Apr. 1989.
[7] F. Lombardi, M. G. Sami, and R. Stefanelli, "Reconfiguration of VLSI arrays by covering,"IEEE Trans. Comput.Aided Design IC Syst., vol. 8, no. 9, pp. 952965, Sept. 1989.
[8] V. P. Roychowdhury, J. Bruck, and T. Kailath, "Efficient algorithms for reconfiguration in VLSI/WSI arrays,"IEEE Trans. Comput., Special Issue on Fault tolerant Computing, vol. 39, no. 4, pp. 480489, Apr. 1990.
[9] T. Varvarigou, V. Roychowdhury, and T. Kailath, "New algorithms for reconfiguring VLSI/WSI arrays,"J. VLSI Signal Processing, vol. 3, no. 4, pp. 329344, Oct. 1991.
[10] T. Varvarigou, V. Roychowdhury, and T. Kailath, "Reconfiguring arrays using multipletrack models: The 3track 1spare approach,"IEEE Trans. Comput., to be published.