This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Reducing Iteration Time When Result Digit is Zero for Radix 2 SRT Division and Square Root with Redundant Remainders
February 1993 (vol. 42 no. 2)
pp. 239-246

A new architecture is presented for shared radix 2 division and square root whose main characteristic is the ability to avoid any addition/subtraction, when the digit 0 has been selected. The solution presented uses a redundant representation of the partial remainder, while keeping the advantages of classical solutions. It is shown how the next digit of the result can be selected even when the remainder is not updated, and the subsequent tradeoff is presented. The proposed architecture is also extended in order to consider other implementations.

[1] D. E. Atkins, "Higher-radix division using estimates of the divisor and partial remainders,"IEEE Trans. Comput., vol. C-17, pp. 925-934, Oct. 1968.
[2] L. Ciminiera and P. Montuschi, "Higher radix square rooting,"IEEE Trans. Comput., vol. 39, no. 10, pp. 1220-1231, Oct. 1990.
[3] M. D. Ercegovac and T. Lang, "On-the-fly conversion of redundant into conventional representations,"IEEE Trans. Comput., vol. C-36, no. 7, pp. 895-897, July 1987.
[4] M. D. Ercegovac and T. Lang, "On-line arithmetic: A design methodology and applications in digital signal processing"VLSI Signal Processing III, pp. 252-263, 1988.
[5] M. D. Ercegovac and T. Lang, "Division," Internal Rep. CS252, Comput. Sci. Dep., U.C.L.A., 1988.
[6] M. D. Ercegovac and T. Lang, "On-the-fly rounding for division and square root," inProc. 9th Symp. Comput. Arithmetic, 1989, pp. 169-173.
[7] M. D. Ercegovac and T. Lang, "Radix-4 square root without initial PLA,"IEEE Trans. Comput., vol. C-39, pp. 1016-1024, Aug. 1990.
[8] M. D. Ercegovac and T. Lang, "Simple radix-4 division with operands scaling,"IEEE Trans. Comput., vol. C-39, pp. 1204-1208, Sept. 1990.
[9] J. Fandrianto, "Algorithm for high speed shared radix 4 division and radix 4 square-root," inProc. 8th IEEE Symp. Comput. Arithmetic, Como, Italy, May 1987, pp. 73-79.
[10] J. Fandrianto, "Algorithm for high speed shared radix 8 division and radix 8 square root," inProc. 9th Symp. Comput. Arithmetic, Sept. 1989, pp. 68-75.
[11] C. V. Freiman, "Statistical analysis of certain binary division algorithms,"Proc. IRE, vol. 49, pp. 91-103, Jan. 1961.
[12] S. Majerski, "Square-rooting algorithms for high-speed digital circuits,"IEEE Trans. Comput., vol. C-34, pp. 724-733, Aug. 1985.
[13] D. M. Mandelbaum, "A systematic method for division with high average bit skipping,"IEEE Trans. Comput., vol. C-39, pp. 127-130, Jan. 1990.
[14] G. Metze, "Minimal square rooting,"IEEE Trans. Electron. Comput., vol. EC-14, pp. 181-185, Apr. 1965.
[15] D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. Oxley, and B. W. Sutter, "The multilayer perceptron as an approximation to a Bayes optimal discriminant function,"IEEE Trans. Neural Networks, vol. 1, no. 4, pp. 296-298, Dec. 1990.
[16] P. Montuschi and L. Ciminiera, "Fast radix-2 division and square root," Internal Rep., I. R. DAI/ARC 15/90, Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy.
[17] G. W. Reitwiesner, "Binary arithmetic," inAdvances in Computers, F. L. Alt, Ed. New York: Academic, 1960.
[18] J. E. Robertson, "A new class of digital division methods,"IRE Trans. Electron. Comput., vol. EC-7, pp. 218-222, Sept. 1958.
[19] P. K.-G. Tu "On-line arithmetic algorithms for efficient implementation," Ph.D. dissertation, Comput. Sci. Dep., U.C.L.A., CSD-900029, Sept. 1990.
[20] T. E. Williams and M. A. Horovitz, "A 160nS 54bit CMOS division implementation using self-timing and symmetrically overlapped SRT stages," inProc. 10th IEEE Symp. Comput. Arithmetic, Grenoble, France, June 1991, pp. 210-217.
[21] J. B. Wilson and R. S. Ledley, "An algorithm for rapid binary division,"IRE Trans. Electron. Comput., vol. EC-10, pp. 662-670, Dec. 1961.
[22] S. Winograd, "On the time required for binary addition,"J. ACM, vol. 12, pp. 277-285, 1965.
[23] J. H. P. Zurawski and J. B. Gosling, "Design of high-speed digital divider units,"IEEE Trans. Comput., vol. C-30, pp. 691-699, Sept. 1981.

Index Terms:
radix 2 SRT division; square root; redundant remainders; digit 0; digital arithmetic.
Citation:
P. Montuschi, L. Ciminiera, "Reducing Iteration Time When Result Digit is Zero for Radix 2 SRT Division and Square Root with Redundant Remainders," IEEE Transactions on Computers, vol. 42, no. 2, pp. 239-246, Feb. 1993, doi:10.1109/12.204797
Usage of this product signifies your acceptance of the Terms of Use.