
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
T. Kameda, S. Pilarski, A. Ivanov, "Notes on Multiple Input Signature Analysis," IEEE Transactions on Computers, vol. 42, no. 2, pp. 228234, February, 1993.  
BibTex  x  
@article{ 10.1109/12.204795, author = {T. Kameda and S. Pilarski and A. Ivanov}, title = {Notes on Multiple Input Signature Analysis}, journal ={IEEE Transactions on Computers}, volume = {42}, number = {2}, issn = {00189340}, year = {1993}, pages = {228234}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.204795}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Notes on Multiple Input Signature Analysis IS  2 SN  00189340 SP228 EP234 EPD  228234 A1  T. Kameda, A1  S. Pilarski, A1  A. Ivanov, PY  1993 KW  multiple input signature analysis; probability; multipleinput compactors; error assumptions; VLSI circuits; binary memory elements; irreducible polynomial; error model; aliasing; standard linear algebra notions; builtin self test; feedback; logic testing; shift registers. VL  42 JA  IEEE Transactions on Computers ER   
Many results regarding the probability of aliasing for multipleinput compactors have been derived under error assumptions that are not very realistic for VLSI circuits. Recently, the value of aliasing probability has been proven to tend to 2/sup k/, where k is the number of binary memory elements of the linear compactor. This result is based on the assumption that the compactor is characterized by an irreducible polynomial and that the 'no error' vector has a probability different from zero. In these notes, the above result is generalized. More specifically, it is proved that it is valid if any two error vectors, neither of which needs to be the 'no error' vector, have probabilities of occurrence different from zero. To make the error model complete, the situation in which exactly one error vector has a probability different from zero is also considered. For the latter type of error distributions, the test lengths at which aliasing occurs are determined. Simple proofs for the results are provided; they are based on standard linear algebra notions and wellknown theorems.
[1] P. H. Bardell, W. H. McAnney, and J. Savir,BuiltIn Test for VLSI: Pseudorandom Techniques. New York: Wiley, 1987.
[2] G. Birkhoff and S. MacLane,A Survey of Modern Algebra, 3rd ed. New York: Macmillan, 1965.
[3] W. C. Carter, "The ubiquitous parity bit," inProc. FTCS12, June 1982, pp. 289296.
[4] W. Daehn, T. W. Williams, and K. D. Wagner, "Aliasing errors in linear automata used as multipleinput signature analyzers,"IBM J. Res. Develop., vol. 34, no. 2/3, pp. 363380, Mar./May 1990.
[5] M. Damiani, P. Olivo, M. Favalli, S. Ercolani, and B. Riccò, "Aliasing errors in signature analysis testing with multipleinput shiftregisters," inProc. IEEE Euro. Test Conf., Apr. 1989, pp. 346353.
[6] M. Damiani, P. Olivo, and B. Riccó, "Analysis and design of linear finite state machines for signature analysis testing,"IEEE Trans. Comput., vol. 40, no. 9, pp. 10341045, Sept. 1991.
[7] R. David, "Comments on 'Signature analysis for multiple output circuits,"IEEE Trans. Comput., vol. 39, no. 2, pp. 287288, Feb. 1990.
[8] W. Feller,An Introduction to Probability Theory and Its Applications, Vol. 1, New York: Wiley, 1950.
[9] R. A. Frohwerk, "Signature analysis: A new digital field service method,"HewlettPackard J., pp. 28, May 1977.
[10] H. Fujiwara,Logic Testing and Design for Testability. Cambridge, MA: MIT Press, 1985.
[11] S. Z. Hassan, D. J. Lu, and E. J. McCluskey, "Parallel signature analyzersDetection capability and extensions," inProc. 26th IEEE Comput. Society Int. Conf., COMPCON Spring 83, Feb.Mar. 1983, pp. 440445.
[12] J. P. Hayes, "Check sum test methods," inProc. FTCS6, June 1976, pp. 114119.
[13] A. Hlawiczka, "Hybrid design of parallel signature analyzers," inProc. IEEE Euro. Test Conf., Apr 1989, pp. 346360.
[14] P. D. Hortensius, R. D. Mcleod, W. Pries, D. M. Miller, and H. C. Card, "Cellular automata based pseudorandom number generators for builtin selftest,"IEEE Trans. Comput.Aided Design, vol. 8, no 8, pp. 84259, Aug. 1989.
[15] K. Iwasaki and F. Arakawa, "An analysis of the aliasing probability of multiple input signature registers in the case of a 2mary symmetric channel,"IEEE Trans. Comput.Aided Design, vol. 9, no. 4, pp. 427438, Apr. 1990.
[16] E. J. McCluskey,Logic Design Principles: with Emphasis on Testable SemiCustom Circuits. Englewood Cliffs, NJ: PrenticeHall, 1986, pp. 448450.
[17] C.C. McDuffee,Vectors and Matrices. Ithaca, NY: Math. Assoc. of America, 1961.
[18] D. M. Miller and S. Zhang, "Aliasing in multipleinput data compactors," inProc. Canadian Conf. Elect. and Comput. Eng., Sept. 1989, pp. 347351.
[19] J. C. Muzio, F. Ruskey, R. C. Aitken, and M. Serra, "Aliasing probabilities for some data compression techniques,"Developments in IC Testing, D. M. Miller, Ed. London, England: Academic, 1987.
[20] W. Nef,Linear Algebra. New York: Dover, 1988.
[21] K. P. Parker, "Compact testing: Testing with compressed data," inProc. FTCS6, June 1976, pp. 9398.
[22] W. W. Peterson and E. J. Weldon,ErrorCorrecting Codes. Cambridge MA: M.I.T. Press, 1972.
[23] D. K. Pradhan, S. K. Gupta, and M. G. Karpovsky, "Aliasing probability for multiple input signature analyzer,"IEEE Trans. Comput., vol. 39, no. 4, pp. 586592, Apr. 1990.
[24] J. P. Robinson and N. R. Saxena, "Simultaneous signature and syndrome compression,"IEEE Trans. Comput.Aided Design, vol. 7, no. 5, pp. 584589, May 1988.
[25] T. Sridhar, D. S. Ho, T. J. Powell, and S. M. Thatte, "Analysis and simulation of parallel signature analyzers," inProc. Int. Test Conf., Philadelphia, PA, Nov. 1982, pp. 656661.
[26] G. Strang,Linear Algebra and Its Applications, 3rd ed. San Diego, CA: Harcourt Brace Jovanovich, 1988.
[27] L.T. Wang and E. J. McCluskey, "Hybrid designs generating maximumlength sequences,"IEEE Trans. Comput.Aided Design, vol. 7, pp. 9199, Jan. 1988.
[28] T. W. Williams and W. Daehn, "Aliasing probability for multipleinput signature analyzers with dependent inputs," inProc. IEEE COMPEURO, May 1989, pp. 120127.
[29] T. W. Williams and W. Daehn, "Aliasing errors in multipleinput signature analysis registers," inProc. IEEE Int. Test Conf., Apr. 1989, pp. 338345.
[30] T. W. Williams, W. Daehn, M. Gruetzner, and C. W. Starke, "Comparison of aliasing errors for primitive and nonprimitive Polynomials," inProc. ITC, Sept. 1986, pp. 282288.
[31] Y. Zorian and V. K. Agarwal, "A general scheme to optimize error masking in builtin selftesting," inProc. FTCS16, July 1986, pp. 410415.
[32] Proposed IEEE P1149.1 Standard Test Access Port and BoundaryScan Architecture, Draft D3, Jan. 18, 1989.
[33] "The challenges of selftest,"IEEE Design&Test Mag., pp. 4656, Feb. 1990.