
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
G.M. Megson, "A Fast Faddeev Array," IEEE Transactions on Computers, vol. 41, no. 12, pp. 15941600, December, 1992.  
BibTex  x  
@article{ 10.1109/12.214668, author = {G.M. Megson}, title = {A Fast Faddeev Array}, journal ={IEEE Transactions on Computers}, volume = {41}, number = {12}, issn = {00189340}, year = {1992}, pages = {15941600}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.214668}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Fast Faddeev Array IS  12 SN  00189340 SP1594 EP1600 EPD  15941600 A1  G.M. Megson, PY  1992 KW  data duplications; fast Faddeev array; systolic array; Faddeev algorithm; inner product steps; matrix inversion; halfarrays; triangularizations; onthefly decoupling; pivot row data; nearest neighbor connections; computational complexity; matrix algebra; parallel algorithms; systolic arrays. VL  41 JA  IEEE Transactions on Computers ER   
A systolic array for the fast computation of the Faddeev algorithm is presented. Inversion of an n*n matrix on a systolic array is known to tend to 5 n inner product steps under the assumption that no data are duplicated. The proposed Faddeev array achieves matrix inversion in just 4 n steps with O(n/sup 2/) basic cells using careful duplications of some data. The array consists of two halfarrays which compute two separate but coupled triangularizations. The coupling is resolved by an onthefly decoupling process which duplicates pivot row data and passes them between the arrays using only nearest neighbor connections.
[1] Y. Robert and D. Trystram, "Systolic solution of the algebraic path problem," inSystolic Arrays, W. Mooreet. al., Eds. Bristol, England: Adam Hilger, 1987, pp. 171180.
[2] S. Y. Kung, S. C. Lo, and P. S. Lewis, "Optimal systolic design for the transitive closure problem,"IEEE Trans. Comput., vol. C36, no. 5, pp. 603614, May 1987.
[3] J. G. Nash and S. Hansen, "Modified Faddeev algorithm for matrix manipulation," inProc. 1984 SPIE Conf., San Diego, CA, Aug. 1984.
[4] Y. Robert and M. Tchuente, "Resolution Systolique de systemes linearies denses,"RAIRO modelisation et Analyse, Numerique 19, pp. 315326, 1985.
[5] A. ElAmawy, "A systolic architecture for fast dense matrix inversion,"IEEE Trans. Comput.vol. C38, no. 3, pp. 449455, 1989.
[6] S. Y. Kung, "On supercomputing with systolic wavefront array processors,"IEEE Proc.vol. 72, pp. 867884, 1984.
[7] H. T. Kung and C. E. Leiserson, "Systolic array (for VLSI)," inSparse Matrix Proc. 1978, SIAM, 1979, pp. 256282.
[8] V. N. Faddeev,Computational Methods of Linear Algebra. New York: Dover, 1959.
[9] W. M. Gentleman and H. T. Kung, "Matrix triangularisation by systolic arrays,"SPIE RealTime Signal Processing IV, 298 1981, pp. 1926.
[10] K. Jainawdunsing and E. F. Deprettere, "A new class for parallel algorithms for solving linear equations,"SIAM J. Sci. Stat. Comput., vol. 10, no. 5, pp. 880912, Sept. 1989.
[11] G. A. Rote, "Systolic array for the Algebraic path problem (shortest paths; matrix inversion),"Computing, vol. 34, pp. 191219, 1985.
[12] G. M. Megson and F. M. F. Gaston, "Improved matrix triangularisation using a double pipeline systolic array,"Inform. Processing Lett., vol. 36, 1990.