
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
M.G. Arnold, T.A. Bailey, J.R. Cowles, M.D. Winkel, "Applying Aeatures of IEEE 754 to Sign/Logarithm Arithmetic," IEEE Transactions on Computers, vol. 41, no. 8, pp. 10401050, August, 1992.  
BibTex  x  
@article{ 10.1109/12.156547, author = {M.G. Arnold and T.A. Bailey and J.R. Cowles and M.D. Winkel}, title = {Applying Aeatures of IEEE 754 to Sign/Logarithm Arithmetic}, journal ={IEEE Transactions on Computers}, volume = {41}, number = {8}, issn = {00189340}, year = {1992}, pages = {10401050}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.156547}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Applying Aeatures of IEEE 754 to Sign/Logarithm Arithmetic IS  8 SN  00189340 SP1040 EP1050 EPD  10401050 A1  M.G. Arnold, A1  T.A. Bailey, A1  J.R. Cowles, A1  M.D. Winkel, PY  1992 KW  IEEE 754; sign/logarithm arithmetic; standard floating point arithmetic; multilayer sign/logarithm format; zeros; denormalized values; infinities; NaNs; logarithmic denormalized arithmetic algorithms; 32 bit; digital arithmetic; number theory; standards. VL  41 JA  IEEE Transactions on Computers ER   
Various features found in standard floating point arithmetic (IEEE 754) are examined in light of their appropriateness for sign/logarithm arithmetic. The emphasis is on a 32b word size comparable to IEEE 754 single precision, although other word sizes are possible. A multilayer sign/logarithm format is considered. The lowest layer, similar to previous implementations, would provide only normalized representations but would not provide representations for zero, denormalized values, infinities, and NaNs. The highest layer would provide most of the features found in IEEE 754, including zeros, denormalized values, infinities, and NaNs. Novel algorithms for implementing logarithmic denormalized arithmetic are presented. Simulation results show that the error characteristics of the proposed logarithmic denormalized arithmetic algorithms are similar to those of the denormalized floating point arithmetic in IEEE 754.
[1] M. G. Arnold. "Extending the precision of the sign logarithm number system," M.S. thesis, Univ. Wyoming, Laramie, 1982.
[2] M. G. Arnold, T. A. Bailey, J. R. Cowles, and J. J. Cupal. "Redundant logarithmic arithmetic,"IEEE Trans. Comput., vol. 39. pp. 10771086, Aug. 1990.
[3] M. Arnold, T. Bailey, J. Cowles, and J. Cupal, "Implementing back propagation neural nets with logarithmic arithmetic," inProc. Int. AMSE Conf. Neural Networks, San Diego, CA, May 2931, 1991.
[4] J. L. Barlow and E. H. Bareiss, "On roundoff distribution in floating point and logarithmic arithmetic,"Computing, vol. 34, pp. 325364, 1985.
[5] J. T. Coonen, "Underflow and the denormalized numbers,"IEEE Comput. Mag., vol 14, no. 3, pp. 7587, Mar. 1981.
[6] A. D. Edgar and S. C. Lee, "FOCUS microcomputer number system,"Commun. ACM, vol. 22, pp. 166177, Mar. 1979.
[7] "Fast floating point C functions."BYTE, vol. 16, no. 7, p. 72MW8, July 1991.
[8] "FFP 1.0," Triakis, Bothell, WA, 1991.
[9] "FastMath Software Benchmark Report,"FastMath, Fort Collins, CO, 1991.
[10] D. Feucht, "Logarithmic number representations in Forth,"J. Forth Appl. Res., vol. 5, no. 2, pp. 271286, 1988.
[11] IEEE Standard for Binary FloatingPoint Arithmetic, ANSI/IEEE Std 7541985, IEEE, 1985.
[12] S. J. Kidd, "Implementation of the signlogarithm arithmetic FFT,"Royal Signals and Radar Establishment Memorandum 3644, Malvern: 1983.
[13] N. G. Kingsbury and P. J. W. Rayner, "Digital filtering using logarith, metic arithmetic,"Electron. Lett., vol. 7. pp. 5658, Jan. 1971.
[14] T. Kurokawa and T. Mizukoshi "A fast and simple method for curve drawingA new approach using logarithmic number systems,"J. Inform. Processing, vol. 14, pp. 144152, 1991.
[15] T. Kurokawa, J. A. Payne, and S. C. Lee, "Error analysis of recursive digital filters implemented with logarithmic number systems,"IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP28, pp. 706715, Dec. 1980.
[16] Language Compatible Arithmetic Standard. version 3.0, X3T2/91006, ISO/IECJTC1/SC22/WG11/N212, American National Standards Institute, Dec. 26, 1990.
[17] S. C. Lee and A. D. Edgar, "The FOCUS number system,"IEEE Trans. Comput., vol. C26, pp. 11671170, Nov. 1977.
[18] Z. Leonelli, Supplémente Logarithmique, a reprint of Leonelli's 1803 manuscript with a biography by J. Hoüel, GauthierVillars. Paris, 1875.
[19] D. M. Lewis, "Hardware accelerators for timing simulation of VLSI digital circuits,"IEEE Trans. Comput.Aided Design, vol. 7, no. 11, pp. 11341149, Nov. 1988.
[20] D. Lewis and L. Yu, "Algorithm design for a 30bit integrated logarithmic processor," inProc. 9th Symp. Comput. Arithmetic, 1989, pp. 192199.
[21] D. M. Lewis. "An architecture for addition and subtraction of long word length numbers in the logarithmic number system,"IEEE Trans. Comput., pp. 13251336, 1990.
[22] J. D. Marasa and D. W. Matula, "A simulative study of correlated error in various finiteprecision arithmetics,"IEEE Trans. Comput., vol. C22, pp. 587597, June 1973.
[23] R. E. Morley, Jr., G. L. Engel, T. J. Sullivan, and S. M. Natarajan, "VLSI based design of a batteryoperated digital hearing aid," inProc. ICASSP, New York, 1988, pp. 25122515.
[24] H. Murveitet al., "A largevocabulary realtime continuousspeech recognition system," inProc. ICASSP, Glasgow, 1989, pp. 789792.
[25] G. M. Papadourakis and H. Andre, "High speed implementation of matrix inversion algorithms in orthogonal systolic architectures," inProc. IEEE Southeastern Conf., IEEE catalog 88CH25718, 1988, pp 200204.
[26] L. Pickett, "Soft coprocessors," Log Point Systems, Mountain View, CA. 1989.
[27] T. Stouraitis, "Logarithmic number system theory, analysis, and design," Ph.D. dissertation, Univ. Florida, Gainesville, 1986.
[28] E. Swartzlander and A. G. Alexopoulos, "The sign/logarithm number system,"IEEE Trans. Comput., vol. C24, pp. 12381242, Dec. 1975.
[29] E. E. Swartzlanderet al., "Arithmetic for ultrahigh speed tomography,"IEEE Trans. Comput., vol. C29, pp. 341353, May 1980.
[30] E. E. Swartzlander, D. Chandra, T. Nagle, and S. A. Starks, "Sign/logarithm arithmetic for FFT implementation,"IEEE Trans. Comput., vol. C32, pp. 526534, 1983.
[31] F. J. Taylor. R. Gill, J. Joseph, and J. Radke, "A 20 bit logarithmic number system processor,"IEEE Trans. Comput., vol. C37, pp. 190199, 1988.