This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Higher Radix Square Root with Prescaling
August 1992 (vol. 41 no. 8)
pp. 996-1009

A scheme for performing higher radix square root based on prescaling of the radicand is presented to reduce the complexity of the result-digit selection. The scheme requires several steps, namely multiplication for prescaling the radicand, square root, multiplication for prescaling for the division, and division. Online algorithms are used to reduce the overall time and pipelining to reuse the different modules. An estimate of the execution time for a radix-256 unit for double-precision square root and a comparison with other implementations indicate that the proposed approach is an alternative to consider when designing a square-root unit.

[1] D. E. Atkins, "Higher-radix division using estimates of the divisor and partial remainders,"IEEE Trans. Comput., vol. C-17, pp. 925-934, Oct. 1968.
[2] L. Ciminiera and P. Montuschi, "Higher radix square rooting,"IEEE Trans. Comput., vol. 39, pp. 1220-1231, Oct. 1990.
[3] B.G. DeLugish, "A class of algorithms for automatic evaluation of certain elementary functions in a binary computer," Ph.D. dissertation, Dep. Comput. Sci., Univ. Illinois, Urbana, June 1970.
[4] M. D. Ercegovac and T. Lang, "On-the-fly conversion of redundant into conventional representations,"IEEE Trans. Comput., vol. C-36, no. 7, pp. 895-897, July 1987.
[5] M. D. Ercegovac and T. Lang, "On-line arithmetic: A design methodology and applications in digital signal processing,"VLSI Signal Processing III, pp. 252-263, 1988.
[6] M. D. Ercegovac and T. Lang, "Division," Internal Rep. CS252, Comput. Sci. Dep., UCLA, 1988.
[7] M. D. Ercegovac and T. Lang, "On-the-fly rounding for division and square root," inProc. 9th Symp. Comput. Arithmetic, 1989, pp. 169-173.
[8] M. D. Ercegovac and T. Lang, "Radix-4 square root without initial PLA,"IEEE Trans. Comput., vol. C-39, pp. 1016-1024, Aug. 1990.
[9] M. D. Ercegovac and T. Lang, "Simple radix-4 division with operands scaling,"IEEE Trans. Comput., vol. C-39, pp. 1204-1208, Sept. 1990.
[10] J. Fandrianto. "Algorithm for high speed shared radix 4 division and radix 4 square-root," inProc. 8th IEEE Symp. Comput. Arithmetic, Como, Italy, May 1987, pp. 73-79.
[11] J. Fandrianto, "Algorithm for high speed shared radix 8 division and radix 8 square root," inProc. 9th Symp. Comput. Arithmetic, Sept. 1989, pp. 68-75.
[12] J.B. Gosling and C.M.S. Blakeley, "Arithmetic unit with integral division and square root,"IEE Proc., pt E, vol. 134, pp. 17-23, Jan. 1987.
[13] R. Hashemian, "Square rooting algorithms for integer and floating point numbers,"IEEE Trans. Comput., vol. C-39, pp. 1025-1029, Aug. 1990.
[14] K. Hwang,Computer Arithmetic: Principles, Architecture, and Design. New York: Wiley, 1979.
[15] "IEEE Standard for Binary Floating-Point Arithmetic," IEEE Standard 754, 1985 IEEE Computer Society.
[16] T. Lang and P. Montuschi, "Some algorithms and architectures for very high radix square rooting," I.R. DAI/ARC 4-91, Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy.
[17] S. Majerski, "Square-rooting algorithms for high-speed digital circuits,"IEEE Trans. Comput., vol. C-34, pp. 724-733, Aug. 1985.
[18] P. Markstein, "Computation of elementary functions on the IBM RISC System/6000 processor,"IBM J. Res Develop., vol. 34, no. 1, pp. 111-119, Jan. 1990.
[19] D. W. Matula, "Design of a highly parallel IEEE floating point arithmetic unit," inProc. Symp. Combinatorial Optimization Sci. and Technol., (COST), at RUTCOR/DIMACS, Apr. 1991.
[20] G. Metze, "Minimal square rooting,"IEEE Trans. Electron. Comput., vol. EC-14, pp. 181-185, Apr. 1965.
[21] D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. Oxley, and B. W. Sutter, "The multilayer perceptron as an approximation to a Bayes optimal discriminant function,"IEEE Trans. Neural Networks, vol. 1, no. 4, pp. 296-298, Dec. 1990.
[22] P. Montuschi and M. Mezzalama, "Survey of square rooting algorithms,"IEE Proc., pt. E, vol. 137, pp. 31-40, Jan. 1990.
[23] S. K. Nandi and E. V. Krishnamurthy, "A simple technique for digital division,"Commun. ACM, 10, pp. 299-301, 1967.
[24] H. Peng, "Algorithms for extracting square roots and cube roots," inProc. 5th IEEE Symp. Comput. Arithmetic, Ann Arbor, MI, May 1981, pp. 121-126.
[25] C. V. Ramamoorthy, J. R. Goodman, and K. H. Kim, "Some properties of iterative square-rooting methods using high-speed multiplication,"IEEE Trans. comput., Vol. C-21, pp. 837-847, Aug. 1972.
[26] J. E. Robertson, "A new class of digital division methods,"IRE Trans. Electron. Comput., vol. EC-7, pp. 218-222, Sept. 1958.
[27] A. Svoboda, "An algorithm for division,"Inf. Proc. Mach., vol. 9, pp. 25-32, 1963.
[28] G.S. Taylor, "Compatible hardware for division and square root." inProc. 5th IEEE Symp. Computer Arithmetic, Ann Arbor, MI, May 1981, pp. 121-126.
[29] C. Tung, "A division algorithm for signed-digit arithmetic,"IEEE Trans. Comput., vol. C-17, pp. 887-889, 1968.
[30] Weitek, W4164 and W4364 Floating Point Processors, Technical Overview, Oct. 1990.
[31] S. Winograd, "On the time required for binary addition,"J. ACM, vol. 12, pp. 277-285, 1965.
[32] J. H. Zurawski and J. B. Gosling, "Design of a high-speed square root multiply and divide unit,"IEEE Trans. Comput., vol. C-36, pp. 13-23, Jan. 1987.

Index Terms:
online algorithms; higher radix square root; prescaling; radicand; complexity; result-digit selection; multiplication; division; pipelining; double-precision square root; digital arithmetic; dividing circuits; multiplying circuits; number theory.
Citation:
T. Lang, P. Montuschi, "Higher Radix Square Root with Prescaling," IEEE Transactions on Computers, vol. 41, no. 8, pp. 996-1009, Aug. 1992, doi:10.1109/12.156542
Usage of this product signifies your acceptance of the Terms of Use.