The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (1992 vol.41)
pp: 550-558
ABSTRACT
<p>A simulation-based method for obtaining numerical estimates of the reliability of N-version, real-time software is proposed. An extended stochastic Petri net is used to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. The distributions of execution times are derived from automatically generated test cases that are based on mutation testing. Since these test cases are designed to reveal software faults, the associated execution times and reliability estimates are likely to be conservative. Experimental results using specifications for NASA's planetary lander control software suggest that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions. Nevertheless, some support for N-version enhancement of high-quality, mutation-tested code is also offered. Mutation analysis could also be valuable in the design of fault-tolerant software systems.</p>
INDEX TERMS
simulation; NASA; real-time software reliability; mutation analysis; numerical estimates; stochastic Petri net; synchronization structure; dependencies; correlated sampling; module execution times; mutation testing; software faults; planetary lander control software; mutation-tested code; fault-tolerant software systems; computational complexity; fault tolerant computing; Petri nets; software reliability.
CITATION
R. Geist, A.J. Offutt, F.C. Harris, Jr., "Estimation and Enhancement of Real-Time Software Reliability Through Mutation Analysis", IEEE Transactions on Computers, vol.41, no. 5, pp. 550-558, May 1992, doi:10.1109/12.142681
21 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool