
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
M. Sarrafzadeh, C.K. Wong, "Bottleneck Steiner Trees in the Plane," IEEE Transactions on Computers, vol. 41, no. 3, pp. 370374, March, 1992.  
BibTex  x  
@article{ 10.1109/12.127452, author = {M. Sarrafzadeh and C.K. Wong}, title = {Bottleneck Steiner Trees in the Plane}, journal ={IEEE Transactions on Computers}, volume = {41}, number = {3}, issn = {00189340}, year = {1992}, pages = {370374}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.127452}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Bottleneck Steiner Trees in the Plane IS  3 SN  00189340 SP370 EP374 EPD  370374 A1  M. Sarrafzadeh, A1  C.K. Wong, PY  1992 KW  bottleneck Steiner trees; maximumweight edge minimized; lower bound; linear decision tree model; NPcomplete; VLSI layout; communication network design; location problems; computational complexity; optimisation; trees (mathematics). VL  41 JA  IEEE Transactions on Computers ER   
A Steiner tree with maximumweight edge minimized is called a bottleneck Steiner tree (BST). The authors propose a Theta ( mod rho mod log mod rho mod ) time algorithm for constructing a BST on a point set rho , with points labeled as Steiner or demand; a lower bound, in the linear decision tree model, is also established. It is shown that if it is desired to minimize further the number of used Steiner points, then the problem becomes NPcomplete. It is shown that when locations of Steiner points are not fixed the problem remains NPcomplete; however, if the topology of the final tree is given, then the problem can be solved in Theta ( mod rho mod log mod rho mod ) time. The BST problem can be used, for example, in VLSI layout, communication network design, and (facility) location problems.
[1] L. P. Chew and R. L. Drysdale, "Voronoi diagrams based on convex distance functions," inProc. ACM Symp. Computat. Geometry, 1985, pp. 235244.
[2] C. Chiang, M. Sarrafzadeh, and C. K. Wong, "A powerful global router: Based on Steiner minmax tree," inProc. ICCAD89, alsoIEEE Trans. Comput.Aided Design, vol. 19, no. 2, pp. 13181325, Dec. 1990.
[3] D. Cheriton and R. E. Tarjan, "Finding minimum spanning trees,"SIAM J. Comput., vol. 5, no. 4, pp. 724742, Dec. 1976.
[4] Z. Drezner, "Competitive location strategy for two facilities,"Regional Sci. and Urban Econom., vol. 12, 1982, NorthHolland, pp. 485493.
[5] E. N. Gilbert, "Minimum cost communication networks,"Bell Syst. Tech. J., vol. 9, pp. 22092227, 1967.
[6] M. R. Garey, R. L. Graham, and D. S. Johnson, "The complexity of computing Steiner minimal tree,"SIAM J. Appl. Mathemat., vol. 32, no. 4, 1977.
[7] M. R. Garey and D. S. Johnson, "The rectilinear Steiner tree problem is NPcomplete,"SIAM J. Appl. Mathemat., vol. 32, no. 4, 1977.
[8] M. R. Garey and D. S. Johnson,Computers and Intractability. San Francisco, CA: Freeman, 1979.
[9] F. K. Hwang, "On Steiner minimal tree with rectilinear distance,"SIAM J. Appl. Mathemat., vol. 30, no. 1, Jan. 1976.
[10] F. K. Hwang, "AnO(nlogn) algorithm for rectilinear minimal spanning trees,"J. ACM, vol. 26, no. 2, pp. 177182, Apr. 1979.
[11] R. M. Karp, "Reducibility among combinatorial problems," inComplexity of Computer Computations. New York: Plenum, 1972, pp. 85163.
[12] O. Kariv and S. L. Hakimi, "An algorithmic approach to network location problemPart I: The pcenters," unpublished manuscript.
[13] D. Lichtenstein, "Planar formulae and their uses,"SIAM J. Comput., vol. 11, no. 2, pp. 329343, 1982.
[14] R. J. Lipton and R. E. Tarjan, "A separator theorem for planar graphs,"SIAM J. Appl. Mathemat., vol. 36, no. 2, pp. 177189, Apr. 1979.
[15] D. T. Lee, private communication.
[16] D. T. Lee, M. Sarrafadeh, and Y. F. Wu, "Minimum cut for circulararc graphs,"SIAM J. Comput., vol. 9, no. 6, p. 10411050, Dec. 1990.
[17] D. T. Lee and C. K. Wong, "Voronoi diagrams inL1(L∞) metric with twodimensional storage applications,"SIAM J. Comput., vol. 9, pp. 200211, 1980.
[18] D. T. Lee and Y. F. Wu, "Geometric complexity of some location problem,"Algorithmica, vol. 1, pp. 193211, 1985.
[19] U. Manber and M. Tompa, "Probabilistic, nondeterministic, and alternating decision trees," TR 820301, Univ. of Washington.
[20] F. P. Preparata and D. E. Muller, "Finding the intersection ofnhalf spaces inO(nlogn) time,"Theoret. Comput. Sci., vol. 8, no. 1, pp. 4555, Jan. 1979.
[21] F. P. Preparata and M. I. Shamos,Computational Geometry, an Introduction. New York: SpringerVerlag, 1985.
[22] M. I. Shamos, "Geometric complexity," inProc. Seventh Annu. ACM SIGACT Conf., May 1975, pp. 224233.
[23] J. Soukup, "On minimum cost networks with nonlinear costs,"SIAM J. Comput., vol. 29, pp. 571581, 1975.
[24] P. Widmayer, Y. F. Wu, and C. K. Wong, "On some distance problems in fixed orientations,"SIAM J. Comput., vol. 16, no. 4, pp. 728746, Aug. 1987.