This Article 
 Bibliographic References 
 Add to: 
Boolean Matrix Transforms for the Minimization of Modulo-2 Canonical Expansions
March 1992 (vol. 41 no. 3)
pp. 342-347

Fast transforms for computing modulo-2 ring-sum canonical expansions of a Boolean function are described using Kronecker products of elementary Boolean matrices. These transforms unify and generalize existing ones in the literature. Previous algorithms which employ such transforms for finding a minimal fixed polarity expansion (FPE) are reviewed, analyzed, and extended to a minimal fixed basis expansion (FBE).

[1] C. E. Shannon, "A symbolic analysis of relay and switching circuits,"Trans. AIEE, vol. 57, pp. 713-723, 1938.
[2] I. S. Reed, "A class of multiple-error-correcting codes and their decoding scheme,"IRE Trans. Inform. Theory, vol. IT-4, pp. 38-49, Sept. 1954.
[3] D. E. Muller, "Application of Boolean algebra to switching circuit design for error detection,"IEEE Trans. Comput., vol. EC-3, pp. 6-12, Sept. 1954.
[4] S. B. Akers, Jr., "On a theory of Boolean functions,"J. Soc. Indust. Appl. Math., vol. 7, no. 4, pp. 487-498, Dec. 1959.
[5] P. Calingaert, "Switching function canonical forms based on communtative and associative binary operations,"AIEE Trans., vol. 79, pp. 808-814, Jan. 1961.
[6] R. J. Lechner, "Transformations among switching function canonical forms,"IEEE Trans. Electron. Comput., vol. EC-12, pp. 129-130, Apr. 1963.
[7] M. Davio, "Ring-sum expansions of Boolean functions," inProc. Symp. Comput. and Automata, Polytechnic Institute of Brooklyn, Apr. 1971, pp. 411-418.
[8] G. Bioul, M. Davio, and J. P. Deschamps, "Minimization of ring-sum expansions of Boolean functions," Philips Res. Rep., vol. 28, pp. 17-36, 1973.
[9] M. Davio, J. P. Deschamps, and A. Thayse,Discrete and Switching Functions. New York: McGraw-Hill, 1978.
[10] S. Swamy, "On generalized Reed-Muller expansions,"IEEE Trans. Comput., vol. C-21, pp. 1008-1009, Sept. 1972.
[11] K. K. Saluja, and E. H. Ong, "Minimization of Reed-Muller canonical expansion,"IEEE Trans. Comput., vol. C-28, pp. 535-537, July 1979.
[12] X. Wu, X. Chen, and S. L. Hurst, "Mapping of Reed-Muller coefficients and the minimization of exclusive-OR switching functions,"IEE Proc., vol. 129, part E, pp. 15-20, 1982.
[13] Ph. W. Besslich, "Efficient computer method for EXOR logic design,"IEEE Proc., vol. 130, part E, pp. 203-206, 1983.
[14] Y. Z. Zhang and P. J. W. Rayner, "Minimization of Reed-Muller polynomials with fixed polarity,"IEE Proc., vol. 131, part E, pp. 177-186, Sept. 1984.
[15] D. H. Green, "Reed-Muller expansions of incompletely specified functions,"IEEE Proc., vol. 134, part E, pp. 228-236, Sept. 1987.
[16] A. Mukhopadhyay and G. Schmitz, "Minimization of exclusive Or and logical equivalence switching circuits,"IEEE Trans. Comput., vol. C-19, pp. 132-140, Feb. 1970.
[17] J. P. Robinson and C. L. Yeh, "A method for modulo-2 minimization,"IEEE Trans. Comput., vol. C-31, pp. 800-801, Aug. 1982.
[18] T. Sassao and P. Besslich, "On the complexity of Mod-2 sum PLA's,"IEEE Trans. Comput., vol. C-39, pp. 262-266, Feb. 1990.
[19] S. M. Reddy, "Easily testable realizations for logic functions,"IEEE Trans. Comput., vol. C-21, pp. 1183-1188, Nov. 1972.
[20] K. K. Saluja and S. M. Reddy, "Fault detecting test sets for Reed-Muller canonic networks,"IEEE Trans. Comput., vol. C-24, pp. 995-998, Oct. 1975.
[21] D. K. Pradhan, "Universal test sets for multiple fault detection in AND-EXOR arrays,"IEEE Trans. Comput., vol. C-27, pp. 181-187, Feb. 1978.
[22] E. J. McCluskey,Logic Design Principles: with Emphasis on Testable Semi-Custom Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1986, pp. 448-450.
[23] A. Graham,Kronecker Products and Matrix Calculus: with Applications. Chichester: Ellis Horwood, 1981.
[24] I. Flores, "Reflected number systems,"IEEE Trans. Electron. Comput., vol. EC-5, pp. 79-82, June 1956.
[25] E. M. Reingold, J. Nievergelt, and N. Deo,Combinatorial Algorithms: Theory and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1977.
[26] P. K. Lui and J. C. Muzio, "A fast computer algorithm for the minimization of fixed polarity modulo-2 ring-sum expansions," inProc. 1988 Canadian Conf. Very Large Scale Integration, Oct. 1988.
[27] P. K. Lui and J. C. Muzio, "Simplified theory of Boolean functions,"Int. J. Electron., vol. 68, pp. 329-341, Mar. 1990.
[28] P. K. Lui and J. C. Muzio, "On the structure of modulo-2 ring-sum canonical expansions for Boolean functions,"Int. J. Electron., vol. 72, pp. 21-35, Jan. 1992.
[29] P. K. Lui and J. C. Muzio, "Boolean matrix transforms for the parity spectrum and the minimization of modulo-2 canonical expansions,"IEE Proc., vol. 138, part E, pp. 411-417, 1991.
[30] P. K. Lui and J. C. Muzio, "Constrained parity testing,"J. Electron. Testing, Theory&Appl., vol. 2, pp. 279-291, 1991.

Index Terms:
Boolean matrix transforms; minimization of modulo-2 canonical expansions; Boolean function; Kronecker products; elementary Boolean matrices; minimal fixed polarity expansion; minimal fixed basis expansion; Boolean functions; minimisation of switching nets.
P.K. Lui, J.C. Muzio, "Boolean Matrix Transforms for the Minimization of Modulo-2 Canonical Expansions," IEEE Transactions on Computers, vol. 41, no. 3, pp. 342-347, March 1992, doi:10.1109/12.127446
Usage of this product signifies your acceptance of the Terms of Use.