This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
An Efficient Method of Computing Generalized Reed-Muller Expansions from Binary Decision Diagram
November 1991 (vol. 40 no. 11)
pp. 1298-1301

An efficient method for the generation of all the 2/sup n/ sets of generalized Reed-Muller (GRM) coefficients for a Boolean function f(X) of n variables using the binary decision diagram (BDD) is presented. The author describes the generation of RM coefficients from minterm values and relates them to the associated subfunctions. Examples are included to illustrate the procedure.

[1] X. Wu, X. Chen, and S. L. Hurst, "Mapping of Reed-Muller coefficients and the minimization of exclusive-OR switching functions,"IEE Proc., part E, vol. 129, pp. 15-20, Jan. 1982.
[2] A. Mukhopadhay and G. Schmitz, "Minimization of exclusive-OR and logical equivalence switching circuits,"IEEE Trans. Comput., vol. C-19, pp. 132-140, Feb. 1970.
[3] Ph. W. Besslich, "Efficient computer method for EX-OR logic design,"IEE Proc., part E, vol. 130, pp. 203-206, June 1983.
[4] Y. Z. Zhang and P. J. W. Rayner, "Minimization of Reed-Muller polynomials with fixed polarity,"IEE Proc., part E, vol. 131, pp. 177-186, May 1984.
[5] D. H. Green, "Reed-Muller expansions of incompletely specified functions,"IEE Proc., part E, vol. 134, pp. 228-236, May 1987.
[6] A. Tran, "Graphical method for conversion of minterms to Reed-Muller coefficients and the minimization of exclusive-OR switching functions,"IEE Proc., part E, vol. 134, pp. 93-99, Feb. 1987.
[7] K. K. Saluja and S. M. Reedy, "Fault detecting test set for Reed-Muller canonic networks,"IEEE Trans. Comput., vol. C-24, pp. 995-998, Oct. 1975.
[8] S. M. Reddy, "Easily testable realizations for logical functions,"IEEE Trans. Comput., vol. C-21, pp. 1183-1188, Nov. 1972.
[9] S. B. Akers, "Binary decision diagram,"IEEE Trans. Comput., vol. C-27, pp. 509-516, June 1978.
[10] S. B. Akers, "Functional testing with binary decision diagram," inProc. IEEE 8th Int. Conf. Fault Tolerant Comput., 1979, pp. 75-82.

Index Terms:
generalized Reed-Muller expansions; binary decision diagram; Boolean function; variables; minterm values; Boolean functions; minimisation of switching nets.
Citation:
S. Purwar, "An Efficient Method of Computing Generalized Reed-Muller Expansions from Binary Decision Diagram," IEEE Transactions on Computers, vol. 40, no. 11, pp. 1298-1301, Nov. 1991, doi:10.1109/12.102837
Usage of this product signifies your acceptance of the Terms of Use.