This Article 
 Bibliographic References 
 Add to: 
VLSI Architectures for Multidimensional Transforms
September 1991 (vol. 40 no. 9)
pp. 1053-1057

The authors propose a family of VLSI architectures with area-time tradeoffs for computing (N*N* . . . *N) d-dimensional linear separable transforms. For fixed-precision arithmetic with b bits, the architectures have an area A=O(N/sup d+2a/) and computation time T=O(dN/sup d/2-a/b), and achieve the AT/sup 2/ bound of AT/sup 2/=O(n/sup 2/b/sup 2/) for constant d, where n=N/sup d/ and O>a>or=d/2.

[1] G. Bilardi, S. W. Hornick, and M. Sarrafzadeh, "Optimal VLSI architectures for multidimensional DFT," inProc. 1989 Symp. Parallel Algorithms Architectures (SPAA), pp. 265-272.
[2] G. Bilardi and M. Sarrafzadeh, "Optimal VLSI circuits for discrete Fourier transform,"Advances in Computing Research, vol. 4, pp. 87-101.
[3] C. Chakrabarti and J. JáJá"A family of optimal architectures for multidimensional transforms," inProc. 26th Annu. Allerton Conf. Commun. Contr. Comput., Monticello, IL, 1988, pp. 1015-1024.
[4] C. Chakrabarti and J. JáJá"Optimal architectures for two dimensional transforms," inProc. Int. Symp. Circuits Syst., Portland, OR, 1989, pp. 1495-1498.
[5] N. U. Chowdary and W. Steenaart, "A high speed two dimensional FFT processor," inProc. IEEE Int. Conf. Acoust., Speech, Signal Processing, San Diego, CA, 1984, pp. 4.11.1-4.11.4.
[6] I. Gertner and M. Shamash, "VLSI architectures for multidimensional Fourier transform processing,"IEEE Trans. Comput., vol. C-36, pp. 1265-1274, Nov. 1987.
[7] D. D. Nath, S. N. Maheshwari, and P. C. P. Bhatt, "Efficient VLSI network for parallel processing based on orthorgonal trees,"IEEE Trans. Comput., vol. C-32, pp. 569-581, 1983.
[8] J. Riordan,An Introduction to Combinatorial Analysis. New York: Wiley.
[9] C. N. Zhang, "Multidimensional systolic networks for discrete Fourier transform," inProc. 11th Annu. Int. Symp. Comput. Architecture, Ann Arbor, MI, 1984, pp. 21-27.

Index Terms:
multidimensional transforms; VLSI architectures; linear separable transforms; fixed-precision arithmetic; computational complexity; computer architecture; digital arithmetic; transforms.
C. Chakrabarti, J. JaJa, "VLSI Architectures for Multidimensional Transforms," IEEE Transactions on Computers, vol. 40, no. 9, pp. 1053-1057, Sept. 1991, doi:10.1109/12.83648
Usage of this product signifies your acceptance of the Terms of Use.